

VELAMMAL

COLLEGE OF ENGINEERING & TECHNOLOGY, MADURAI – 625 009 (Autonomous)

(Accredited by NAAC with 'A' Grade and by NBA for 5 UG Programmes)

(Approved by AICTE and affiliated to Anna University, Chennai)

DEPARTMENT OF MECHANICAL ENGINEERING

B.E. MECHANICAL ENGINEERING

CURRICULUM and SYLLABUS

(I to VIII Semesters)

B.E. MECH (I TO VIII SEMESTERS)

BoS Chairman

R-2021(CBCS)

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY VIRAGANOOR, MADURAI – 625 009. (AUTONOMOUS) **B.E. MECHANICAL ENGINEERING CHOICE BASED CREDIT SYSTEM REGULATIONS 2021** I TO VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I

* Naan Mudhalvan Scheme Course

0 **BoS Chairman**

i

		SEMESTER II					
S. No	COURSE CODE	COURSE TITLE	Category	L	Т	Р	С
		THEORY					
1	21EN102	English – II (Common to all B.E. / B.Tech. Programmes)	HS	3	0	0	3
2	21MA102	Vector Calculus and Complex Variables (Common to Civil, EEE & Mechanical)	BS	3	2	0	4
3	21PH106	Physics for Mechanical Engineering	BS	3	0	0	3
4	21ME101	Engineering Graphics (Common to all B.E. / B.Tech. Programmes)	ES	2	0	2	3
5	21ME102	Engineering Mechanics	PC	3	0	0	3
6	21CH103	Environmental Science (Common to all B.E. / B.Tech. Programmes)	BS	2	0	0	2
		THEORY WITH PRACTICAL C	OURSE				
7	21EE103	Basic Electrical and Electronics Engineering (Common to Civil & Mechanical)	ES	3	0	2	4
	-	PRACTICAL COURSE					
8	21EM101	Engineering Practices Laboratory (Common to all B.E. / B.Tech. Programmes)	ES	0	0	4	2
]	fotal	24

SEMESTER III

S. No	COURSE CODE	COURSE TITLE	Category	L	Т	Р	С
		THEORY					
		Transforms and Partial Differential					
1	21MA201	Equations	BS	3	2	0	4
		(Common to Civil, ECE, & Mechanical)					
2	21ME201	Engineering Thermodynamics	PC	3	0	0	3
2 21ME202		Strength of Materials for Mechanical	PC	2	0	0	2
5 2	211 v 1E202	Engineers	rC	5	0	0	5
4	-	Microsoft office Fundamentals*	EE	1	0	0	1
		THEORY WITH PRACTICAL COU	J RSES				
5	21ME203	Engineering Metallurgy	PC	3	0	2	4
6	21ME204	Manufacturing Technology – I	PC	3	0	2	4
7	21EE216	Electrical Drives and Controls	ES	3	0	2	4
		PRACTICAL COURSE					
Q	21EN201	Interpersonal Skills Laboratory - Listening	ЦС	0	0	2	1
8 21EN201		& Speaking	пэ	0	U		1
]	fotal	24

* Naan Mudhalvan Scheme Course

6

SEMESTER IV

S. No.	COURSE CODE	COURSE TITLE	Category	L	Т	Р	С
		THEORY					
		Probability, Statistics and Numerical					
1	21MA204	Methods	BS	3	2	0	4
		(Common to Civil & Mechanical)					
2	21ME205	Manufacturing Technology – II	0	0	3		
3	21ME206	Kinematics and Dynamics of Machines	PC	3	0	0	3
4	21ME207	Thermal Engineering	PC	3	0	0	3
		URSE					
5	21ME208	Fluid Mechanics and Machinery	PC	3	0	2	4
		PRACTICAL COURSES					
6	21ME209	Manufacturing Technology Laboratory – II	PC	0	0	4	2
7	21ME210	Thermal Engineering Laboratory	PC	0	0	4	2
8	21ME211	Kinematics and Dynamics Laboratory	PC	0	0	4	2
0	21EN202	Advanced Reading and Writing	ЦС	0	0	2	1
9 21EN202		Laboratory	115	0	U		1
]	fotal	24

SEMESTER V

S. No.	COURSE CODE	COURSE TITLE Category L					С
	•	THEORY					
1	21ME301	Design of Machine Elements	PC	3	0	0	3
2	21ME302	Productivity and Quality Management	PC	3	0	0	3
3	21ME303	Fluid power automation	PC	3	0	0	3
4	21PMEXX	Professional Electives I	PE	3	0	0	3
5	-	Naan Mudhalvan Scheme Course **	EE	2	0	0	2*
6	21MCC01	Constitution of India	MC	2	0	0	0
		THEORY WITH PRACTICAL COU	URSES				
7	21ME304	Heat and Mass Transfer	PC	2	0	2	3
8	21ME305	Metrology and Measurements	PC	2	0	2	3
9	21ME306	Computer Aided Product Development	PC	2	0	2	3
	·	PRACTICAL COURSE					
10	-	Summer Internship***	EE	0	0	0	1
					T	otal	22

** Robotics Simulation for Manufacturing/ E-Vehicles for Mechanical Engineers /Machine Learning / IoT / Industry 4.0

***Two weeks Summer Internship.

10

S. No.	COURSE CODE	COURSE NAME	Category	L	Т	Р	С
		THEORY					
1	21ME307	Design of Transmission System	PC	3	0	0	3
2	21PMEXX	Professional Electives II	PE	3	0	0	3
3	210XXX	Open Elective – I	OE	3	0	0	3
4	210XXX	Open Elective – II	OE	3	0	0	3
5	-	Naan Mudhalvan Scheme Course **EE		2	0	0	2*
6	21MCC02	Essence of Indian Traditional Knowledge	MC	2	0	0	0
		URSES					
7	21ME308	Finite Element Analysis	PC	3	0	2	4
8	21ME309	Mechatronics and IoT*	PC	2	0	2	3
		PRACTICAL COURSES					
0	21ME210	Design Thinking and Prototype	EE	0	0	4	n
9	2111112310	Development	EE	0	0	4	Z
10	21EN301	Professional Communication Laboratory	ory HS 0		0	2	1
11	-	One Credit Course	EE	0	0	2	1
					T	otal	23

SEMESTER VI

SEMESTER VII

S. No.	COURSE CODE	COURSE NAME	Category	L	Т	Р	С
		THEORY					
1	21PMEXX	Professional Electives III	PE	3	0	0	3
2	21 PMEXX	Professional Electives IV	PE	3	0	0	3
3	210XXX	Open Elective – III	OE	3	0	0	3
4	210XXX	Open Elective – IV	OE	3	0	0	3
5		Nan Mudhalvan Scheme Course**	EE	2	0	0	2*
		PRACTICAL COURSE					
6	21ME401	Project Work I	EE	0	0	4	2
					Т	otal	14

SEMESTER VIII

S. No.	COURSE CODE	COURSE NAME	Category	L	Т	Р	С
		THEORY COURSES					
1	21PMEXX	Professional Electives V	PE	3	0	0	3
2	21PMEXX	Professional Electives VI	PE	3	0	0	3
		PRACTICAL COURSE					
3	21ME402	Project Work II	EE	0	0	20	10
					Т	otal	16

** Robotics Simulation for Manufacturing/ E-Vehicles for Mechanical Engineers /Machine Learning / IoT / Industry 4.0

Total Credits: 169

6

iv

CATEGORY	Ι	II	III	IV	V	VI	VII	VIII	TOTAL CREDITS
BS	12	9	4	4					29
ES	5	9	4						18
HS	4	3	1	1		1			10
PC		3	14	19	18	10			64
PE					3	3	6	6	18
OE						6	6		12
EE	1		1		1+(2*)	3+(2*)	2+(2*)	10	18
MC									-
TOTAL	22	24	24	24	22	23	14	16	169

S.No.	Торіс								
1	Humanities and Social Sciences including Management (HS)								
2	Basic Sciences (BS)								
3	Engineering Sciences including workshop, drawing, basics of electrical/mechanical/computer etc. (ES)								
4	Professional Core Courses (PC)								
5	Professional Elective : Courses relevant to chosen specialization/ branch (PE)								
6	Open Electives : Courses from other technical and/or emerging courses (OE)								
7	Project work, Seminar and Internship in Industry -Employability Enhancement Courses								
	(EE)								
8	Mandatory Course (MC)								
9	One Credit Courses (OC)								

** Naan Mudhalvan Scheme Course- Subject to guidelines provided by Government of Tamil Nadu

10

S. No.	Course Code	Course Name	Category	L	Т	Р	С
1	21PME01	Design Concepts in Engineering	PE	3	0	0	3
2	21PME02	Product Life Cycle Management	PE	3	0	0	3
3	21PME03	Computer Integrated Manufacturing	PE	3	0	0	3
4	21PME04	Additive Manufacturing	PE	2	0	2	3
5	21PME05	Composite Materials in Product Development	PE	3	0	0	3
6	21PME06	Ergonomics in Design	PE	3	0	0	3
7	21PME07	Design for Manufacturing and Assembly	PE	3	0	0	3

VERTICAL 1: PRODUCT AND PROCESS DEVELOPMENT

VERTICAL 2: DIGITAL AND GREEN MANUFACTURING

S. No.	Course Code	Course Name	Category	L	Т	Р	С
1	21PME08	Non-Traditional Machining Processes	PE	3	0	0	3
2	21PME09	Casting and Welding Processes	PE	3	0	0	3
3	21PME10	Non Destructive Testing	PE	3	0	0	3
4	21PME11	Surface Engineering	PE	3	0	0	3
5	21PME12	Industrial Automation Systems	PE	3	0	0	3
6	21PME13	Green Supply Chain Management	PE	3	0	0	3
7	210PH01	Modern Material Characterization Techniques	PE	3	0	0	3

VERTICAL 3: CLEAN AND GREEN ENERGY TECHNOLOGIES

S. No.	Course Code	Course Name	Category	L	Т	Р	С
1	21PME14	Renewable Energy Technologies	PE	3	0	0	3
2	21PME15	Bioenergy Conversion Technologies	PE	3	0	0	3
3	21PME16	Energy Storage Devices	PE	3	0	0	3
4	21PME17	Solar Energy Technologies	PE	3	0	0	3
5	21PME18	Energy Conservation in Industries	PE	3	0	0	3
6	21PME19	Equipment for Pollution Control	PE	3	0	0	3
7	21PME20	Environment Sustainability and Impact Assessment	PE	3	0	0	3

VERTICAL 4: LOGISTICS AND SUPPLY CHAIN MANAGEMENT

S. No.	Course Code	Course Name	Category	L	Т	Р	С
1	21PME21	Logistics in Manufacturing, Supply Chain and Distribution	PE	3	0	0	3
2	21PME22	Materials Management	PE	3	0	0	3
3	21PME23	Enterprise Resource Planning	PE	3	0	0	3
4	21PME24	Warehousing Automation and	PE	3	0	0	3

vi

10

		Container Logistics					
5	21PME25	Material Handling Equipment, Repair and Maintenance	PE	3	0	0	3
6	21PME26	Process Planning and Cost Estimation	PE	3	0	0	3
7	21PME27	Production Planning and Control	PE	3	0	0	3

VERTICAL 5: THERMAL POWER PROCESSES AND EQUIPMENT

S. No.	Course Code	Course Name	Category	L	Т	Р	С
1	21PME28	Thermal Power Engineering	PE	3	0	0	3
2	21PME29	Automobile Engineering	PE	3	0	0	3
3	21PME30	Advanced Internal Combustion Engines	PE	3	0	0	3
4	21PME31	Refrigeration and Air Conditioning	PE	3	0	0	3
5	21PME32	Gas Turbines and Jet Propulsion	PE	3	0	0	3
6	21PME33	Power Plant Engineering	PE	3	0	0	3
7	210CH02	Materials Chemistry	PE	3	0	0	3

VERTICAL 6: INDUSTRIAL SYSTEM ENGINEERING

S. No.	Course Code	Course Name	Category	L	Т	Р	С
1	21PME34	Principles of Management	PE	3	0	0	3
2	21PME35	Total Quality Management	PE	3	0	0	3
3	21PME36	Lean Manufacturing	PE	3	0	0	3
4	21PME37	Industrial safety	PE	3	0	0	3
5	21PME38	Industry 4.0	PE	3	0	0	3
6	21PME39	Professional Ethics	PE	3	0	0	3
7	21PME40	Entrepreneurship Development	PE	3	0	0	3
8	21PME41	Operations Research	PE	3	0	0	3

ONE CREDIT COURSES

S. No.	Course Code	Course Name	Category	L	Т	Р	С
1	210CME01	Design for Additive Manufacturing- SIEMENS	EE	0	0	2	1
2	210CME02	Product Design and Development- Thors E learning	EE	0	0	2	1
3	210CME03	Testing of Materials-CIPET	EE	0	0	2	1
4	210CME04	Alternate Fuels- Optima Heat Technologies	EE	0	0	2	1
5	210CME05	Startup- MSME	EE	0	0	2	1
6	210CME06	Lean Six Sigma- Intelligence Quality	EE	0	0	2	1

6

SEMESTER – I

211D1 01	INDUCTION PROGRAMME	L	Т	Р	С			
211P101	(Common to all B.E./ B.Tech. programmes)	0	0	0	0			
This is a mand	latory 2 week programme to be conducted as soon as the students enter the	: insti	itutio	on.				
Normal classe	s start only after the induction program is over.							
The induction	programme has been introduced by AICTE with the following objective:							
"Engineering a holistic outlo have knowled understanding he/she would Besides the ab	"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, as a citizen and as a human being. Besides the above, several meta-skills and underlying values are needed."							
"One will hav them to explor excellence, provide view of life, at	e to work closely with the newly joined students in making them feel comp re their academic interests and activities, reduce competition and make the omote bonding within them, build relations between teachers and students, nd build character. "	fortał m wo , give	ole, a ork f a bi	allow or roade	r			
The following throughout the	are the activities under the induction program in which the student would e day for the entire duration of the program.	be fu	ılly (engag	ed			
(i) Physic	al Activity							
This would in	volve a daily routine of physical activity with games and sports, yoga, gard	lenin	g, et	c.				
(ii) Creativ	ve Arts							
Every student are painting, s the program. T enhance creati	would choose one skill related to the arts whether visual arts or performing culpture, pottery, music, dance etc. The student would pursue it every day These would allow for creative expression. It would develop a sense of aes wity which would, hopefully, grow into engineering design later.	g arts for tl thetic	s. Ex he du cs ar	ampl uratio nd also	es n of o			
(iii) Univer	rsal Human Values							
This is the and one to experie relationships v module in Uni important. It n a dialogue. It i	choring activity of the Induction Programme. It gets the student to explore nce the joy of learning, stand up to peer pressure, take decisions with cour- with colleagues and supporting stay in the hostel and department, be sensiti iversal Human Values provides the base. Methodology of teaching this cor- nust not be through do's and dont's, but get students to explore and think by is best taught through group discussions and real life activities rather than b	onese age, l ive to itent y eng lectur	elf a be av o oth is ex agin ring.	nd all ware of ers, e stremo ng the	ows of tc. A ely m in			
Discussions w	yould be conducted in small groups of about 20 students with a faculty mer	itor e	ach	It wo	ould			

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration

Olfornathy Bos Chairman

of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering/Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and **therefore there shall be no tests** / **assessments** during this programme.

REFERENCE: Guide to Induction program from AICTE

Stomathy **\$**hairman

21EN101

PROFESSIONAL ENGLISH-1 (*Common to all B.E./B.TECH. Programmes*)

L T P C 3 2 0 4

COURSE OBJECTIVES:

- To develop learners skills in listening and responding effectively
- To apply basic grammar for better communication
- To employ reading passages for understanding vocabulary
- To construct logical sentences and participate in pair presentation, extempore
- To organize ideas for various compositions in writing

		-
UNIT I	INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION	12

Listening – Listening for general information - Specific details - Conversation: Introduction to classmates - Audio / video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form; **Speaking** - Self Introduction; Introducing a friend; Conversation - Politeness strategies; Telephone conversation; Leave a voicemail; Leave a message with another person; asking for information to fill details in a form; **Reading** - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails; **Writing** - Writing emails / letters introducing oneself; **Grammar** - Present Tense (simple, continuous); Question types: Wh/ Yes or No/ and Tags **Vocabulary** - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION

Listening - Listening to podcast, anecdotes / stories / event narration; documentaries and interviews with celebrities; **Speaking** - Narrating personal experiences / events; Interviewing a celebrity; Reporting / and summarizing of documentaries / podcasts/ interviews; **Reading** - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs; **Writing** - Guided writing - Paragraph writing Short Report on an event (field trip etc.); **Grammar** - Past tense (Simple, continuous); Subject-Verb Agreement; and Prepositions; **Vocabulary** - Word forms (prefixes& suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

Listening - Listen to a product and process descriptions; a classroom lecture; and advertisements about a products; **Speaking** - Picture description; Giving instruction to use the product; Presenting a product; and Summarizing a lecture; **Reading** - Reading advertisements, gadget reviews; user manuals; **Writing** - Writing definitions; instructions; and Product /Process description; **Grammar** - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect, Present and past perfect continuous tenses; **Vocabulary** - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words)

UNIT IV

CLASSIFICATION AND RECOMMENDATIONS

12

12

Listening - Listening to TED Talks; Scientific lectures; and educational videos; **Speaking** – Small Talk; Mini presentations and making recommendations; **Reading** - Newspaper articles; Journal reports - Non Verbal Communication (tables, pie charts etc.) **Writing** - Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart, graph etc, to verbal mode) **Grammar** - Articles; Pronouns - Possessive & Relative pronouns; **Vocabulary** -Collocations; Fixed / Semi fixed expressions

UNIT V EXPRESSIONS

Listening - Listening to debates/ discussions; different viewpoints on an issue; and panel discussions; Speaking - Group discussions, Debates, and Expressing opinions through Simulations & Role-play; Reading - Reading editorials; and Opinion Blogs; Writing - Essay Writing (Descriptive or narrative); Grammar - Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences; Vocabulary - Cause & Effect Expressions - Content vs. Function words.

TOTAL: 60 PERIODS

12

COURSE OUTCOMES:

At the end of the course, learners will be able to:

CO1: Listen and comprehend complex academic texts

CO2: Read and infer the denotative and connotative meanings of technical texts

CO3: Write definitions, descriptions, narrations and essays on various topics

CO4: Speak fluently and accurately in formal and informal communicative contexts

CO5: Express their opinions effectively in both oral and written medium of communication

TEXT BOOKS:

- Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University. English for Science & Technology. Cambridge University Press, 2021
- 2. Board of Editors, Department of English, Anna University. English for Engineers & Technologists. Orient Blackswan Private Ltd, 2020.
- 3. Board of Editors, Department of English, Anna University. Using English Orient Blackswan Private Ltd, 2017

REFERENCES:

- 1. Meenakshi Raman & Sangeeta Sharma. Technical Communication Principles And Practices Oxford University Press, New Delhi, 2016
- 2. Lakshminarayanan K.R. A Course Book on Technical English. SciTech Publications (India) Pvt. Ltd., 2012
- 3. Ayesha Viswamohan. English For Technical Communication (With CD). McGraw Hill Education, ISBN: 0070264244. 2008.
- 4. Kulbhusan Kumar, RS Salaria, Effective Communication Skill. Khanna Publishing House. 1st Edition, 2018.
- 5. Dr. V. Chellammal. Learning to Communicate. Allied Publishing House, New Delhi, 2003.

S. Chairman

21 M A 101	MATRICES AND CALCULUS	L	Т	Р	С
2111/1/101	(Common to all B.E. / B.Tech. Programmes)	3	2	0	4
COURSE OBJE	CTIVES:				
To develop	op the use of matrix algebra techniques that is needed by engine	ers f	for 1	pract	ical
application	ns.				
To explain	the students about differential calculus.				
• To demo	nstrate the functions of several variables technique to solve pro-	oblen	ns i	n m	any
engineerin	g branches.				
To demon	strate the various techniques of integration.				
To prepare	e the student to use mathematical tools in evaluating multiple integrals a	nd th	neir		
application	ns.				
UNIT I	MATRICES			12	2
Eigenvalues and I	Eigenvectors of a real matrix - Characteristic equation - Properties of	Eige	enval	lues	and
Eigenvectors – Ca	ayley - Hamilton theorem - Diagonalization of matrices by orthogonal	trans	sforr	natic	m –
Reduction of a q	uadratic form to canonical form by orthogonal transformation - Na	ture	of q	uadr	atic
forms – Applicati	ons: Stretching of an elastic membrane.				
UNIT II	DIFFERENTIAL CALCULUS			12	2
Representation of	f functions - Limit of a function - Continuity - Derivatives - Differentiation	atior	rule	es (s	um,
product, quotient	, chain rules) - Implicit differentiation - Logarithmic differentiation	- Aj	oplic	atio	ns :
Maxima and Min	ima of functions of one variable.				
UNIT III	FUNCTIONS OF SEVERAL VARIABLES			12	2
Partial differentia	tion - Homogeneous functions and Euler's theorem - Total derivat	ive -	- Ch	ange	e of
variables – Jacob	ians – Partial differentiation of implicit functions – Taylor's series for	func	tion	s of	two
variables – Appli	cations : Maxima and minima of functions of two variables and Lagra	ange'	s me	etho	1 of
undetermined mu	ltipliers.				
UNIT IV	INTEGRAL CALCULUS			12	2
Definite and Inde	efinite integrals - Substitution rule - Techniques of Integration: Inte	grati	on b	y pa	arts,
Trigonometric int	egrals, Trigonometric substitutions, Integration of rational functions by	y par	tial 1	fract	ion,
Integration of irra	ational functions - Improper integrals - Applications: Hydrostatic fo	rce a	nd p	oress	ure,
moments and cent	tre of mass.				
UNIT V	MULTIPLE INTEGRALS			12	2
Double integrals -	- Change of order of integration – Double integrals in polar coordinates	s - A	rea e	enclo	osed
by plane curves –	Triple integrals – Volume of solids – Change of variables in double an	nd tri	ple i	nteg	rals
– Applications: M	Ioments and centres of mass, moment of inertia.				
	ΤΟΤΑΙ	.:60	PE	RIO	DS
COURSE OUTC	COMES:				
At the end of the	course, learners will be able to				
CO1: Use the mat	trix algebra methods for solving engineering problems.				

CO2: Apply differential calculus tools in solving various application problems.

CO3: Make use of differential calculus ideas on several variable functions.

CO4: Identify suitable methods of integration in solving practical problems.

CO5: Solve practical problems of areas, volumes using multiple integrals.

TEXT BOOKS:

- 1. Kreyszig.E, "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons, New Delhi, 2016.
- 2. Grewal.B.S. "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2018.
- 3. James Stewart, "Calculus: Early Transcendentals", 8th Edition, Cengage Learning, New Delhi, 2015.

REFERENCES:

- 1. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", 7th Edition, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 2009.
- 2. Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", 5th Edition, Narosa Publications, New Delhi, 2016.
- 3. Ramana. B.V., "Higher Engineering Mathematics", 6th Edition, McGraw Hill Education Pvt. Ltd, New Delhi, 2010.
- 4. Thomas. G. B., Hass. J and Weir. M.D, "Thomas Calculus", 14th Edition, Pearson India, 2018.

21DU101	ENGINEERING PHYSICS	L	Т	Р	С				
211111	(Common to I Year B.E. / B.Tech. Students)	0	3						
OBJECTIVES: • To illustrate the students effectively to achieve an understanding of mechanics. • To infer the students to gain knowledge of electromagnetic waves and its applications. • To explain the basics of oscillations, optics and lasers. • To outline the importance of quantum physics. • To relate the students towards the applications of quantum mechanics. UNIT I MECHANICS 9 Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque – rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum– double pendulum									
–Introduction to UNIT II	nonlinear oscillations. ELECTROMAGNETIC WAVES				9				
The Maxwell's e wave field - pro matter - polariz Intensity, waves Reflection and tr for normal incide	equations - wave equation; Plane electromagnetic waves in perties of electromagnetic waves: speed, amplitude, phase ation - Producing electromagnetic waves - Energy and from localized sources, momentum and radiation pressu ansmission of electromagnetic waves from a non-conductin ence.	vacuur e, orien momen ure - C g mediu	n, Conc tation a tum in cell-phon um vacu	litions of and way EM way ne rece aum into	on the ves in vaves: ption. erface				
UNIT III	OSCILLATIONS, OPTICS AND LASERS				9				
Simple harmonic waves on a strin Doppler effect. Michelson interf Spontaneous and CO2 laser, semic	c motion - resonance –analogy between electrical and mech ng - standing waves - traveling waves - Energy transfer of Reflection and refraction of light waves - total interna Ferometer –Theory of air wedge and experiment. Theory I stimulated emission - Einstein's coefficients - population conductor laser –Basic applications of lasers in industry.	nanical of a wa l reflec of lase inversi	oscillati ve – so tion - er - cha ton - No	ing syst ound wa interfer tracteris 1-YAG	ems - aves - ence– stics - laser,				
UNIT IV	BASIC QUANTUM MECHANICS				9				
Photons and ligh (Time dependen particle - particle the corresponden	nt waves - Electrons and matter waves –Compton effect - t and time independent forms) - meaning of wave funct e in an infinite potential well: 1D,2D and 3D Boxes- Norm ace principle.	The S tion - I nalizati	chrodin Normali on, prol	ger equ zation babilitie	Lation –Free es and				

Aninsun Bos Chairman

UNIT	V APPLIED QUANTUM MECHANICS
The ha	rmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunnel
micros	cope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles i
periodi	ic potential –Basics of Kronig-Penney model and origin of energy bands.
	TOTAL: 45 PERIO
OUTC	COMES:
At the	end of the course, learners will be able to:
CO1:	: Explain the importance of mechanics.
CO2	: Extend their knowledge in electromagnetic waves.
CO3	: Illustrate a strong foundational knowledge in oscillations, optics and lasers.
CO4:	Interpret the importance of quantum physics.
CO5	: Summarize quantum mechanical principles towards the formation of energy bands.
TEXT	BOOKS:
1.	D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", 1st Edition, McGraw I
	Education, 2017.
2.	E.M.Purcell and D.J.Morin, "Electricity and Magnetism", 3rd Edition, Cambridge University
	Press, 2013.
3.	Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", 7 th Editi McGraw-Hill, 2017.
REFE	RENCES
1.	R.Wolfson. "Essential University Physics", Volume 1 & 2., 1st Edition (Indian Edition) Pear
	Education, 2009.
2.	Paul A. Tipler, "Physics" - Volume 1 & 2, 1st Edition (Indian Edition), CBS Publishers
	Distributors, 2004.
3.	K.Thyagarajan and A.Ghatak. "Lasers: Fundamentals and Applications", 2 nd Edition, Las
	Publications, (Indian Edition), 2019.
4.	D.Halliday, R. Resnick and J. Walker, "Principles of Physics", 10 th Edition (Indian Edition) Wiley 2015
5.	N.Garcia, A.Damask and S.Schwarz, "Physics for Computer Science Students", 1 st Editi

Springer Verlag, 2012.

finosun BoS Chairman

ENGINEERING CHEMISTRY

(Common to all B.E / B.Tech. Programmes)

L	Т	Р	С
3	0	0	3

9

9

9

9

COURSE OBJECTIVES:

21CH101

- To describe water quality parameters and water treatment techniques.
- To discuss basic principles and preparatory methods of nanomaterials.
- To demonstrate the basic concepts and applications of phase rule and composites.
- To identify different types of fuels, their preparation, properties and combustion characteristics.
- To illustrate the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-colour, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, fluoride and arsenic. Municipal water treatment: primary treatment and disinfection (UV, Ozonation, break-point chlorination).Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process.

UNIT II NANOCHEMISTRY

Basics: Distinction between molecules, nanomaterials and bulk materials; **Size-dependent properties** (optical, electrical, mechanical and magnetic); **Types of nanomaterials**: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. **Preparation of nanomaterials:** sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. **Applications** of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III

PHASE RULE AND COMPOSITES

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.

Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). **Properties and applications of**: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. **Hybrid composites** - definition and examples.

UNIT IV FUELS AND COMBUSTION

Fuels: Introduction: Classification of fuels; **Coal and coke**: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). **Petroleum and Diesel:**

BoS Chairmar

Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; **Power alcohol and biodiesel.**

Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; **Ignition temperature**: spontaneous ignition temperature, Explosive range; **Flue gas analysis** - ORSAT Method. **CO2 emission and carbon foot print.**

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

TOTAL: 45 PERIODS

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. **Solar energy conversion:** Principle, working and applications of solar cells; **Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries:** Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; **Electric vehicles-working principles; Fuel cells:** H₂-O₂ fuel cell, microbial fuel cell; **Supercapacitors:** Storage principle, types and examples.

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO 1: Infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO 2: Describe the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO 3: Apply the knowledge of phase rule and composites for material selection requirements.
- CO 4: Identify suitable fuels for engineering processes and applications.
- CO 5: Demonstrate different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, DhanpatRai Publishing Company (P) Ltd, New Delhi, 2018.
- 2. Sivasankar B., "Engineering Chemistry", 1st Edition, Tata McGraw-Hill Publishing Company Ltd, NewDelhi, 2008.
- 3. S.S. Dara, "A text book of Engineering Chemistry", 12th Edition, S. Chand Publishing, 2018.

REFERENCES:

- 1. B. S. Murty, P. Shankar, Baldev Raj, B.B. Rath and James Murday, "Text book of nanoscience and nanotechnology", 1st Edition, Universities Press-II M Series in Metallurgy and Materials Science, 2018.
- 2. O.G. Palanna, "Engineering Chemistry" 2nd Edition, McGraw Hill Education (India) Private Limited, 2017.
- 3. Friedrich Emich, "Engineering Chemistry", 1st Edition, Scientific International PVT, LTD, New Delhi, 2014.
- 4. Shikha Agarwal, "Engineering Chemistry-Fundamentals and Applications", 2nd Edition,

Cambridge University Press, Delhi, 2019

5. O.V. Roussak and H.D. Gesser, "Applied Chemistry-A Text Book for Engineers and Technologists", 2nd Edition, Springer Science Business Media, New York, 2013.

(1) 1 () 1 () 1	PROBLEM SOLVING AND PYTHON PROGRAMMING	L	Τ	P	С
2105101	(Common to all B.E./B.Tech Programmes)	3	0	0	3
COURSE OBJI	ECTIVES:			<u> </u>	
• To describ	e the basics of algorithmic problem solving.				
• To solve p	roblems using Python conditionals and loops.				
• To illustra	e Python functions and use function calls to solve problems.				
• To make u	se of Python data structures - lists tuples, and dictionaries to represent	com	plex	data	L.
• To explain	input/output with files in Python	0011	prom	uutu	•
UNIT-I	COMPUTATIONAL THINKING AND PROBLEM SOLVING				9
Fundamentals of	Computing – Identification of Computational Problems -Algorithms.	bui	lding	g blo	cks of
algorithms (state	ments, state, control flow, functions), notation (pseudo code, flow c	hart	, pro	ogran	aming
anguage), algor	thmic problem solving, simple strategies for developing algorithms (if	terat	ion,	recui	rsion).
Ilustrative prob	ems: find minimum in a list, insert a card in a list of sorted cards, an	nd g	uess	an i	nteger
number in a rang	e, Towers of Hanoi.	U			U
	DATA TYPES EXPRESSIONS STATEMENTS				0
Python interpret	and interactive mode debugging: values and types: int float boole	an	strin	σan	d list
ariables, expre	ssions statements tuple assignment precedence of operators con	ımer	nts:	5, an Illust	trative
orograms: excha	nge the values of two variables, circulate the values of n variables, dig	stand	ce be	twee	en two
points.	<u>.</u>				
UNIT-III	CONTROL FLOW, FUNCTIONS, STRINGS				9
Conditionals: Bo	oolean values and operators, conditional (if), alternative (if-else), chair	ned	cond	lition	al (if-
else-if-else); Iter	ation: state, while, for, break, continue, pass; Fruitful functions: return	valu	les r	baran	natara
			, r		ieters,
ocal and globa	l scope, function composition, recursion; Strings: string slices, in	mmu	itabil	lity,	string
ocal and globa unctions and	l scope, function composition, recursion; Strings: string slices, in nethods, string module; Lists as arrays. Illustrative programs:	mmu squa	itabil are	lity, root,	string gcd,
ocal and globa unctions and exponentiation, s	l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: um an array of numbers, linear search, binary search.	mmu squa	itabil are	lity, root,	string gcd,
ocal and globa functions and exponentiation, so UNIT-IV	l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: um an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES	mmu squa	itabil are	lity, root,	string gcd, 9
ocal and globa functions and exponentiation, s U NIT-IV Lists: list operat	 l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES tons, list slices, list methods, list loop, mutability, aliasing, cloning list 	mmu squa	itabil are	lity, root, aram	string gcd, 9 neters;
local and globa functions and exponentiation, s UNIT-IV Lists: list operat Tuples: tuple as	 l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES tons, list slices, list methods, list loop, mutability, aliasing, cloning list signment, tuple as return value; Dictionaries: operations and methods 	mmu squa sts, 1	list p	lity, root, aram	string gcd, 9 neters; xd list
local and globa functions and exponentiation, s UNIT-IV Lists: list operat Tuples: tuple as processing - list	 l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES tons, list slices, list methods, list loop, mutability, aliasing, cloning list signment, tuple as return value; Dictionaries: operations and methot comprehension; Illustrative programs: simple sorting, histogram 	mmu squa sts, 1 nods; n, S	list p adv	lity, root, param vance nts	string gcd, 9 neters; 2d list marks
local and globa functions and exponentiation, s UNIT-IV Lists: list operat Fuples: tuple as processing - list statement, Retail	 l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES ions, list slices, list methods, list loop, mutability, aliasing, cloning list signment, tuple as return value; Dictionaries: operations and methot comprehension; Illustrative programs: simple sorting, histogram bill preparation. 	mmu squa sts, 1 nods; n, S	list p adv	lity, root, param /ance nts	string gcd, 9 neters; 2d list marks
local and globa functions and exponentiation, s UNIT-IV Lists: list operat Tuples: tuple as processing - lis statement, Retail UNIT-V	 l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES ions, list slices, list methods, list loop, mutability, aliasing, cloning list signment, tuple as return value; Dictionaries: operations and methot comprehension; Illustrative programs: simple sorting, histogram bill preparation. FILES, MODULES, PACKAGES 	mmu squa sts, 1 nods; n, S	list p adv	lity, root, paran /ance nts	string gcd, 9 neters; ed list marks 9
local and globa functions and exponentiation, s UNIT-IV Lists: list operat Tuples: tuple as processing - lis statement, Retail UNIT-V Files and except	 l scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES ions, list slices, list methods, list loop, mutability, aliasing, cloning list signment, tuple as return value; Dictionaries: operations and method, t comprehension; Illustrative programs: simple sorting, histogram bill preparation. FILES, MODULES, PACKAGES ons: text files, reading and writing files, format operator; command line 	squa squa sts, 1 nods; n, S	list p are are dist p dude	lity, root, oaram /ance nts	9 eters; ed list marks 9 errors
local and globa functions and exponentiation, s UNIT-IV Lists: list operat Tuples: tuple as processing - lis statement, Retail UNIT-V Files and exceptions, Voter's age value	I scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES ions, list slices, list methods, list loop, mutability, aliasing, cloning list signment, tuple as return value; Dictionaries: operations and methot t comprehension; Illustrative programs: simple sorting, histogram bill preparation. FILES, MODULES, PACKAGES ons: text files, reading and writing files, format operator; command lin handling exceptions, modules, packages; Illustrative programs: wor lation, Marks range validation (0-100).	mmu squa sts, 1 nods; n, S n, S ne arg	list p are list p dude gume	hity, root, param aram ance nts ents, copy	 string gcd, gcd, ged list marks g errors y file,
ocal and globa functions and exponentiation, so JNIT-IV Lists: list operat Fuples: tuple as processing - list tatement, Retail JNIT-V Files and except and exceptions, /oter's age value	I scope, function composition, recursion; Strings: string slices, in methods, string module; Lists as arrays. Illustrative programs: sum an array of numbers, linear search, binary search. LISTS, TUPLES, DICTIONARIES ions, list slices, list methods, list loop, mutability, aliasing, cloning list signment, tuple as return value; Dictionaries: operations and methods, to comprehension; Illustrative programs: simple sorting, histogram bill preparation. FILES, MODULES, PACKAGES ons: text files, reading and writing files, format operator; command linhandling exceptions, modules, packages; Illustrative programs: worlation, Marks range validation (0-100).	mmu squa sts, 1 nods; n, S le ar; d cc	list p are list p dude gume ount,	hity, root, param vance nts ents, copy	9 eters; ed list marks 9 errors y file,

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO1: Make use of design approaches to solve computational problems.
- CO2: Develop and execute basic Python programs using expressions and input/output statements.
- CO3: Utilize strings, functions and control statements to develop real world problems.
- CO4: Construct programs using Python data types like lists, tuples and dictionaries.
- CO5: Prepare a Python application by incorporating files and exceptions.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.
- 3. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc- Graw Hill, 2018.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", 1st Edition, Pearson Education, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", 3rd Edition, MIT Press, 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019

	21CS102	PROBLEM SOLVING AND PYTHON PROGRAMMING	L	Т	P	С	
		LABORATORY	0	0	4	2	
		(Common to all B.E./B.Tech Programmes)	U	U	-	2	
COU	RSE OBJECT	IVES:					
•	To describe th	e basics of algorithmic problem solving.					
•	To solve prob	lems using Python conditionals and loops.					
•	To illustrate F	ython functions and use function calls to solve problems.					
•	To make use of Python data structures - lists tuples and dictionaries to represent complex data						
•	 To explain input/output with files in Python. 						
	1 1	LIST OF EXPERIMENTS					
1	. Identificatio	n and solving of simple real life or scientific or technical problems. a	nd d	evel	oping	g	
	flow charts	for the same. (Electricity Billing, Retail shop billing, Sin series, weig	ht o	f a n	notor	bike,	
	Weight of a	steel bar, compute Electrical Current in Three Phase AC Circuit, etc.	,)				
2	. Python prog	ramming using simple statements and expressions (exchange the valu	les c	of tw	0		
	variables, ci	rculate the values of n variables, distance between two points).					
3	. Scientific pr	oblems using Conditionals and Iterative loops. (Number series, Numl	ber I	Patte	rns,		
	pyramid pat	tern)					
4	. Implementir	g real-time/technical applications using Lists, Tuples. (Items present	in a				
	library/Com	ponents of a car/ Materials required for construction of a building -o	pera	tion	s of l	ist &	
	tuples)						
5	. Implementir	g real-time/technical applications using Sets, Dictionaries. (Language	e, co	ompo	onent	s of	
	an automob	ile, Elements of a civil structure, etc.,- operations of Sets & Dictionar	ies)				
6	. Implementir	g programs using Functions. (Factorial, largest number in a list, area	of s	hape	;)	``	
7	. Implementir	g programs using Strings. (reverse, palindrome, character count, repl	acin	ig ch	aract	ers)	
ð	• Implementir	g programs using written modules and Python Standard Libraries (pa	inda	s, nu	impy	•	
0	Matplotlib,	scipy)	a fil	a ta	omoti		
9	• Implementin	longest word)	e m	eto	anou	ler,	
1	• Implementir	rongest word)	hv 7	ero			
-	error voter'	age validity student mark range validation)	5 y 2	010			
1	1. Exploring P	vgame tool					
1	2. Developing	a game activity using Pygame like bouncing ball, car race etc					
		TOT	AL:	60 P	ERI	ODS	
007							
	KSE OUTCO	MES:					
At th	e end of the co	urse, learners will be able to					
CO1	Develop algor	thmic solutions to simple computational Problems					
CO2	: Illustrate and	execute basic Python programs using simple statements.					

CO3: Build program for scientific problems using strings, functions and control statements.

CO4: Utilize compound data types lists, tuples and dictionaries for real-time applications.

CO5: Experiment the python packages, files and exceptions for developing software applications

BoS Chairman

2100101	PHYSICS AND CHEMISTRY LABORATORY	L	Т	P	С		
21FC101	(Common to all B.E / B.Tech. Programmes)	0	0	4	2		
	CHEMISTRY LABORATORY						
COURSE OBJE	CTIVES:						
• To inculcate experimental skills to test basic understanding of water quality parameters such as							
acidity, al	kalinity, hardness, DO, chloride and copper.						
To induce	e the students to familiarize with electro analytical techniques	such as	s pH r	netry,			
potentiom	etry and conductometry in the determination of impurities in aq	ueous s	solutio	ns.			
To demon	strate the analysis of metals and alloys.						
To demon	strate the synthesis of nanoparticles.						
• To analyz	e the quality of coal sample using proximate analysis.						
	List of Experiments (Any 7 experiments)						
1. Preparat	tion of Na ₂ CO ₃ as a primary standard and estimation of acidity	of a wa	ater sa	mple ı	ising		
the pri	mary standard.						
2. Detern	nination of types and amount of alkalinity in water sample.						
3. Detern	nination of total, temporary & permanent hardness of water by H	EDTA 1	netho	1.			
4. Detern	nination of DO content of water sample by Winkler's method.						
5. Detern	nination of chloride content of water sample by Argentometric r	nethod.					
6. Estima	tion of copper content of the given solution by Iodometry.						
7. Estima	tion of TDS of a water sample by gravimetry.						
8. Detern	nination of strength of given hydrochloric acid using pH meter.						
9. Detern	nination of strength of acids in a mixture of acids using conduct	ivity m	eter.				
10. Condu	ctometric titration of barium chloride against sodiu	m sul	phat	е.			
(precip	bitation titration)						
11. Estima	tion of iron content of the given solution using potentiometer.						
12. Estima	tion of sodium /potassium present in water using flame photom	eter.					
13. Prepar	ation of nanoparticles ($TiO_2/ZnO/CuO$) by Sol-Gel method.						
14. Estima	tion of Nickel in steel.						
15. Proxin	nate analysis of Coal.						
COURSE OUTC	COMES : At the end of the course, learners will be able to						
CO1: To analyse	e the quality of water samples with respect to their acidity, al	kalinity	y, harc	lness a	.nd		
DO.							
CO2: To determi	ne the amount of metal ions through volumetric and spectroscop	pic tech	inique	s.			
CO3: To analyse	and determine the composition of alloys.						
CO4: To learn s	imple method of synthesis of nanoparticles.						
CO5: To quantita	atively analyse the impurities in solution by electro analytical ter	chnique	es.				

Juinsun FF: Job Chairman

Text Book:

J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, "Vogel's Textbook of Quantitative Chemical Analysis" 2009.

Juinsun FT-JTOGOOTJ

B.E. – MECHANICAL ENGINEERING (I TO VIII SEMESTER)

BoS Chairman

	ENGLISH-II	L	Т	Р	С			
21EN102	(Common to all B.E./B.TECH. Programmes)	3	0	0	3			
COURSE O	BJECTIVES:							
• To de	velop strategies and skills to enhance their ability to read and con	nprel	nend					
engin	eering and technology texts.	1						
• To prepare and write convincing job applications and effective reports.								
• To de	monstrate their speaking skills to make technical presentations ar	nd pa	rticip	oate i	n			
group	discussions.							
 To ap 	ply their Listening skill which will help them comprehend lecture	es an	d tall	cs in				
their	areas of specialization							
• To ch	oose appropriate soft skills to suit the situation.							
UNIT I	INTRODUCTION TO TECHNICAL ENGLISH				9			
Listening -	Factual and Academic speeches; Speaking - Asking for and g	iving	dire	ection	ns -			
Reading - T	echnical texts from - Newspapers /websites; Writing - Statemer	nts -	Defi	nitio	ns -			
issue based v	writing instructions - Checklists - Recommendations; Vocabula	ry D	evelo	opme	ent-			
technical voc	abulary; Grammar - Error spotting - Compound words; Soft s	kills	- Le	aders	ship			
Skills.								
UNIT II	READING AND STUDY SKILLS				9			
Listening -	Listening to longer technical talks and completing exercises	bas	ed o	n th	em;			
Speaking -	Describing a general process; Reading - Reading longer	techr	nical	text	. s -			
Identifying t	he various transitions in a text - Paragraphing; Writing - In	terpr	eting	g cha	arts,			
graphs; Voc	abulary Development - Vocabulary used in formal letters/er	nails	and	rep	orts			
Grammar -	Impersonal passive voice, numerical adjectives - Soft skills - Tea	mwc	ork					
UNIT III	TECHNICAL WRITING AND GRAMMAR				9			
Listening -	Listening to classroom lectures, talks on engineering /technol	ogy;	Spe	akir	ıg -			
introduction	to technical presentations; Reading - longer texts both gener	al a	nd te	echni	cal,			
practice in sp	eed reading; Writing - Describing a technical process; Vocabula	ary L)evel	opm	ent			
- Sequence	words - Misspelled words; Grammar - Embedded sentence	s ; ;	Soft	skil	ls -			
Decision mal								
UNITIV	JOB APPLICATIONS		-		9			
Listening -	Listening to documentaries and making notes. Speaking	- N	lecha	nics	of			
presentations	; Reading - Reading for detailed comprehension; Writing - Em	ail e	tique	tte -	job			
application -	Cover Letter - Resume preparation(via email and hard copy) -	Ana	lytic	al es	say			
writing - Vo	cabulary Development - finding suitable synonyms - paraphras	sing;	Gra	mma	ar -			
clauses - If conditionals - Soft skills - Time Management								
UNIT V GROUP DISCUSSION AND REPORT WRITING 9								
Listening -	ED talks; Speaking - Participating in a group discussion - Read	ing -	Kea	ding	a.:1			
and understanding technical articles; Writing - Writing reports - Survey report, accident report								
and minutes of a meeting - Vocabulary Development - Verbal analogies; Grammar -								
reported spee								
R F - MECHAN	$16 \qquad \qquad$							
b.e. Mechanical Engineering (Fro vin Semesters) bob chairman (F2021 (CDCS)								

	TOTAL: 45 PERIODS
COURSE OUTCOMES :	
At the end of the course, learners will be able to:	
CO1: Interpret by reading information in technical texts	
CO2: Choose appropriate language to write convincing job application	ons, resume and reports
CO3: Formulate the technical ideas effectively in spoken and written	forms
CO4: Analyze and understand spoken language in lectures and talks	
CO5: Demonstrate basic soft skills in life	
TEXT BOOKS:	
1. Board of Editors, Fluency in English-A Course book for Und	ergraduate Engineers and
Technologist. Orient Blackswan Pvt Ltd, Hyderabad: 2018	
2. Jawahar, Jewelcy & Rathna.P. Communicative English Work	book. VRB Publishers Pvt
Ltd. Chennai. 2018.	
3. Board of Editors, Department of English, Anna University, C	hennai. Mindscapes-
English for Technologists and Engineers. Orient Black Swan	Pvt Ltd, Chennai, 2012.
REFERENCES:	
1. Verma, Shalini. Technical Communication for Engineers. Vil	kas Publishing House Pvt
Ltd. New Delhi. 2015	
2. Raman, Meenakshi & Sharma, Sangeeta. Technical Commun	ication English Skills for
Engineers. Oxford University Press. 2008.	
3. Rizvi, Ashraf.M. Effective Technical Communication. MC G	raw Hill Education Pvt
Ltd. New Delhi. 2016.	

atty S. J. F. Bos Chairman

	VECTOR CALCULUS AND COMPLEX VARIABLES	L	Τ	Р	С			
21MA102	(Common to B.E. CIVIL Engg., EEE & MECH Engg.)	3	2	0	4			
COURSE O	BJECTIVES:							
• To explain the students with the concepts of vector calculus, needed for problem solving in all								
engii	neering disciplines.							
• To choose the effective mathematical methods for finding the solutions of partial differential								
equa	tions.							
• To io	lentify and develop the standard techniques of complex variables.							
• To a	pply with confidence, in application areas such as heat conduction, el	asticit	y, flui	d				
dyna	mics and flow of electric current.							
• To p	repare the student to acquire sound knowledge of techniques in solvin	ıg ordi	nary					
diffe	rential equations that model engineering problems.							
UNIT I	VECTOR CALCULUS				12			
Gradient,	Divergence and Curl – Directional derivation – Irrotational and sole	noidal	vecto	or field	ls –			
Vector inte	egration - Greens theorem in a plane, Gauss Divergence theorem	and S	toke's	s theo	rem			
(excluding	proof) - Simple applications involving cubes and rectangular paralle	lepipe	d					
UNIT II	PARTIAL DIFFERENTIAL EQUATIONS				12			
Formation o	f partial differential equations – Solutions of standard types of first or	der PI	DE :					
f(p, q) = 0, f(q) = 0	f(z, p,q)=0, $z=px+qy+f(p,q)$, $f(x, p) = f(y, q) - Lagrange's linear eq$	uation	s – lii	near p	artial			
differential e	equations of second and higher order with constant coefficients of home	nogen	eous	type.				
UNIT III	ANALYTIC FUNCTIONS				12			
Analytic fu	nctions – necessary and sufficient conditions for analyticity-pr	operti	es –	Harm	ionic			
conjugates-	construction of analytic function – conformal mapping –Mapping	by fur	iction	s- Bil	inear			
transformati	on $w = c + z$, az , $\frac{1}{z}$, z^2 .							
UNIT IV	COMPLEX INTEGRATION				12			
Complex Int	tegration - Cauchy's integral theorem and integral formula (excludin	g proc	of)-Ta	ylor s	eries			
and Laurent	t's series -Residues - Cauchy's residue Theorem (excluding pro	of) –	App	licatio	n of			
Residue the	prem to evaluate real integrals around unit circle and semi- circle (e	xclud	ing p	oles of	n the			
real axis).					1			
UNIT V	ORDINARY DIFFERENTIAL EQUATIONS				12			
Linear equa	tions of second order with constant and variable coefficients-Home	ogeneo	ous ec	quation	ns of			
Euler type -	- Equations reducible to homogeneous form –Variation of paramet	ers-Si	multa	neous	first			
order with constant coefficients.								
		OTAL	.: 60]	PERI	ODS			
COURSE O	UTCOMES:							
At the end o	f the course, learners will be able to							
CO1: Apply the concept of vector calculus which naturally arises in many engineering Problems.								
CO2: 5	Solve the Partial Differential Equations by using various techniques.							
	18 N.P. Prohalan							
B.E. – MECHAN	VICAL ENGINEERING (I TO VIII SEMESTERS) BoS Chairman	R-2021 (CBCS	5)				

R-2021 (CBCS)

CO3: Construct an analytic function using the properties of analytic function.

CO4: Apply suitable formula to evaluate the given integral.

CO5: Use a suitable method, solve the given differential equation of first & second order.

TEXT BOOKS:

- 1. Kreyszig Erwin, "Advanced Engineering Mathematics ", 10th Edition, John Wiley and Sons, New Delhi, 2016.
- 2. James Stewart, "Calculus: Early Transcendentals", 8th Edition, Cengage Learning New Delhi, 2015.
- 3. Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus", 14th Edition, Pearson Education, 2018.

REFERENCES :

- 1. B.S.Grewal, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, 2015.
- 2. P. Kandasamy, Thilagavathy and K.Gunavathy, "Engineering Mathematics Vol-II", 3rd Edition, S. Chand Limited, 2015.
- 3. P. Kandasamy, Thilagavathy and K.Gunavathy, "Engineering Mathematics Vol-III", 3rd Edition, S. Chand Limited, 2015.

Bos Chairman

21PH106	PHYSICS FOR MECHANICAL ENGINEERING	L	Т	Р	С	
211 11100	THISTED FOR MECHANICAL ENGINEERING	3	0	0	3	
OBJECTIV	ES:					
• To ex	plain the basics of crystallography and its importance in studying m	aterial	s proj	perties	s.	
• To ill	ustrate the electrical properties of materials including free electron the magnetic materials	neory,	appli	catior	ns of	
• To in	fer the knowledge on physics of semiconductors determination of cl	narge	carrie	rs and	4	
devic	e applications	lui ge	curre	is une	•	
• To su appli	Immarize the knowledge on different optical properties of materials, cations	optica	ıl disp	lays a	ind	
• To translate the significance of nano structures, quantum confinement in nano device						
applications.						
UNIT I	CRYSTALLOGRAPHY				9	
Crystal stru	ctures: BCC, FCC and HCP - Directions and planes - Linear and pla	nar de	ensitie	s - Cr	ystal	
imperfectio	ns- Edge and screw dislocations - Grain and twin boundaries - Burg	gers vo	ector	and el	lastic	
strain energ	gy - Slip systems, plastic deformation of materials - X-ray diffra	ction	- Bra	iggs l	aw -	
Powder X-r	ay diffraction.					
UNIT II I	ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIA	ALS			9	
Classical fro	ee electron theory - Expression for electrical conductivity -	Thern	nal co	onduc	tivity,	
expression -	Quantum free electron theory: Tunneling – degenerate states - H	³ ermi-	Dirac	statis	stics -	
Density of e	nergy states - Electron effective mass - Concept of hole. Magnetic 1	nateri	als: d	ia, pa	ra and	
ferromagneti	c effects - Domain theory of ferromagnetism - Hysteresis behaviour	- quai	ntum i	interfe	erence	
devices - GN	IR devices.					
UNIT III	SEMICONDUCTORS AND TRANSPORT PHYSICS				9	
Intrinsic Sen	niconductors - Energy band diagram - direct and indirect band gap se	micor	nducto	ors - C	Carrier	
concentration	n in intrinsic semiconductors - extrinsic semiconductors - Carrier con	ncentr	ation	in n-t	ype &	
p-type semi	conductors - Variation of carrier concentration with temperature	- Ca	rrier t	ransp	ort in	
Semiconduc	tors: Drift, mobility and diffusion - Hall effect and devices - Ohn	nic con	ntacts	- Scl	nottky	
diode.						
UNIT IV	OPTICAL PROPERTIES OF MATERIALS				9	
Classificatio	n of optical materials - Optical processes in semiconductors: o	optical	abso	orptio	n and	
emission, ch	arge injection and recombination, optical absorption, loss and gain	1. Opt	tical p	roces	ses in	
quantum we	lls - Optoelectronic devices: light detectors and solar cells - light	emitt	ing d	iode -	· laser	
diode - opti	cal processes in organic semiconductor devices - excitonic state	e - E	lectro	-optic	s and	
nonlinear op	tics: Modulators and switching devices.					
UNIT V	NANOELECTRONIC DEVICES				9	
Quantum co	onfinement - Quantum structures - quantum wells, wires and o	dots -	Zen	er -	Bloch	
oscillations	- Resonant tunneling - Quantum interference effects - Mesoscop	pic str	uctur	es - S	Single	
electron phe	nomena - Single electron Transistor. Semiconductor photonic struc	tures ·	- 1D,	2D ai	nd 3D	
photonic cry	stal Photo processes - Spintronics - Carbon nanotubes: properties	and ap	oplica	tions.		
	T	OTA	L: 45	PER	IODS	
OUTCOME	S:					
At the end of	f the course, learners will be able to					
CO1: Explain the basics of crystallography and its importance for various material properties.						
CO2: Infer t	he electrical and magnetic properties of materials and their application	ons.				
	20 Juindrun					
B.E. – MECHAN	ICAL ENGINEERING (I TO VIII SEMESTERS) Bos Chairman	R-2021	(CBCS	5)		

CO3: Relate the semiconductor physics and functioning of semiconductor devices.

CO4: Summarize the optical properties of materials and working principles of various optical devices.

CO5: Translate the importance of functional nanoelectronic devices.

TEXT BOOKS:

- 1. V. Raghavan, "Materials Science and Engineering: A First Course", 6th Edition, Prentice Hall India Learning Private Limited, 2015.
- 2. S.O. Kasap, "Principles of Electronic Materials and Devices", 4th Edition (Indian Edition), Mc-Graw Hill Publication, 2018.
- 3. Jasprit Singh, "Semiconductor Devices: Basic Principles", 1st Edition (Indian Edition), Wiley Publication, 2007.
- 4. Jasprit Singh, "Semiconductor Optoelectronics: Physics and Technology", 1st Edition (Indian Edition) Mc-Graw Hill Publication, 2019.
- 5. G.W. Hanson, "Fundamentals of Nanoelectronics", Indian Standard Edition, Pearson Education, 2009.

REFERENCES

- 1. R. Balasubramaniam, "Callister's Materials Science and Engineering", 2nd Edition (Indian Edition), Wiley Publication, 2014.
- 2. Wendelin Wright and Donald Askeland, "Essentials of Materials Science and Engineering", 1st Edition, CL Engineering Publishers, 2013.
- 3. Robert F. Pierret, "Semiconductor Device Fundamentals", Standard Edition, Pearson Education, 2006.
- 4. Pallab Bhattacharya, "Semiconductor Optoelectronic Devices", 1st Edition, Pearson Education, 2017.
- 5. Ben Rogers, Jesse Adams and Sumita Pennathur, "Nanotechnology: Understanding Small Systems", 1st Edition, CRC Press, 2017.

211 (5 101	ENGINEERING GRAPHICS	L	Т	P	С	
21ME101	(Common to all B.E./B.Tech. Programmes)	2	0	2	3	
COURSE OF	JECTIVES:	11	1			
To sk	tch the projection of points, lines and planes.					
• To sk	tch the projection of simple solids					
• To ske	tch the projection of sectioned solids and development of lateral su	rface	es			
• To ske	tch the isometric and perspective views of simple solids.					
• To ske	tch the orthographic projection of various objects freehandly.					
UNIT I P	ROJECTIONS OF POINTS, LINES AND PLANE SURFACE			1	2	
Importance of	graphics in engineering applications – Use of drafting instruments	- Let	tteri	ng a	nd	
dimensioning.						
Introduction t	Orthographic projections - Principles -Principal planes-First an	gle	proje	ectio	on.	
Projection of	points located in all quadrants. Projection of straight lines inclin	ed to	o bo	oth 1	the	
principal planes - Determination of true lengths and true inclinations by rotating line method.						
Projection of	planes (regular polygonal and circular surfaces) inclined to both	n the	e pri	incij	pal	
planes by rota	ing object method. (Not for Examination)			r		
UNIT II P	ROJECTION OF SOLIDS			1	2	
Projection of	imple solids like prisms, pyramids, cylinder, cone and truncated s	olids	s wh	en t	the	
axis is incline	to one of the principal planes by rotating object method.					
UNIT III	ROJECTION OF SECTIONED SOLIDS AND DEVELOPMEN	NT ()F	1	2	
Sectioning of	above solids in simple vertical position when the cutting plane is	incli	ned	to 1	the	
one of the pr	ncipal planes and perpendicular to the other – obtaining true sha	ane o	of s	ectio	on.	
Development	of lateral surfaces of simple and sectioned solids – Prisms, pyramid	s cvl	inde	ers a	nd	
cones.	, FJ, FJ, FJ, FJ, FJ, FJ, FJ, FJ, FJ,	~ - j -				
UNIT IV I	OMETRIC AND PERSPECTIVE PROJECTIONS			1	2	
Principles of	sometric projection – isometric scale –Isometric projections of sin	nple	soli	ds a	nd	
truncated soli	ls - Prisms, pyramids, cylinders, cones- Perspective projection of	sim	ple	soli	ds-	
Prisms, pyram	ids and cylinders by visual ray method.					
UNIT V F	REEHAND SKETCHING			1	2	
Visualization	concepts and Free Hand sketching: Visualization principles -Rep	prese	entat	ion	of	
Three Dimen	ional objects - Layout of views- Freehand sketching of multip	le v	iews	s fro	om	
pictorial view	of objects.					
Introduction to	drafting packages and demonstration. (Not for examination).					
	TOTAL:	60 I	PER	IO	DS	
COURSE OU	TCOMES:					
At the end of	he course, learners will be able to					

CO1: Construct the orthographic projections of points, straight lines and plane surfaces.

CO2: Sketch the orthographic projections of simple solids

CO3: Sketch the orthographic projections of sectional solids and lateral surfaces of the solids.

CO4: Construct the isometric projections and perspective projections of simple solids.

CO5: Sketch the orthographic projection of objects using freehand.

TEXT BOOKS:

- 1. Natarajan K.V., "A text book of Engineering Graphics", 31st Edition, Dhanalakshmi Publishers, Chennai, 2018.
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", 15th Edition, New Age International (P) Limited, 2018.
- 3. Bhatt N.D. and Panchal V.M., "Engineering Drawing", 53rd Edition, Charotar Publishing House, 2014.

REFERENCES:

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", 2nd Edition, Tata McGraw Hill Publishing Company Limited, 2013.
- 2. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", 2nd Edition, Oxford University, Press, New Delhi, 2015.
- 3. Shah M.B., and Rana B.C., "Engineering Drawing", 2nd Edition, Pearson, 2009.

21ME102 ENCINEEDING MECHANICS L		Т	Р	С			
21ME102	ENGINEERING MECHANICS	3	0	0	3		
COURSE OBJ	ECTIVES:		I				
To calcu	late the effect of force in particle and rigid bodies.						
• To inter	pret various forces acting on a structure.						
To predi	ct the centroid and moment of inertia.						
• To demonstrate the laws of motion, kinematics of motion and their relation.							
• To calculate the types of friction for moving bodies and problems related to friction.							
UNIT I STA	ATICS OF PARTICLES AND RIGID BODIES				9		
STATICS OF	PARTICLES: Force on a particle - resultant of two force	es a	and	sev	eral		
concurrent force	s – resolution of a force – equilibrium of a particle-free body dia	grar	n –	forc	e in		
space – equilibri	um of a particle in space.						
STATICS OF F	RIGID BODIES: External, Internal forces – transmissibility – mo	mei	nt of	a fo	orce		
- Varignon's the	eorem - moment of a couple - resolution of a force into a force	and	l a c	oup	le –		
reduction of a s	ystem of forces - reactions at supports and connections - equili	briu	m o	of a	two		
and three force b	oodies –case studies.						
UNIT II AN	ALYSIS OF STRUCTURES			9	9		
Simple trusses-N	Method of joints, method of sections - joints under special loading	ng c	cond	itior	ıs –		
space trusses – a	nalysis of frames						
UNIT III PR	OPERTIES OF SURFACES AND SOLIDS				9		
Centroids of are	as, composite areas, determination of moment of inertia of plan	e fi	gure	s, po	olar		
moment of inert	a-radius of gyration – mass moment of inertia of simple solids						
UNIT IV DY	NAMICS OF PARTICLES			(9		
Displacements,	Velocity and acceleration, their relationship - Relative motion	ı —	Cur	vilir	iear		
motion - Newton	n's laws of motion – Work Energy Equation– Impulse and Mome	entu	m –	Imp	pact		
of elastic bodies							
UNIT V FR	ICTION AND RIGID BODY DYNAMICS				•		
Friction force –	Laws of sliding friction – equilibrium analysis of simple system	ns v	with	slid	ing		
friction – wedg	e friction Rolling resistance -Translation and Rotation of F	Rigio	d B	odie	s –		
Velocity and ac	cceleration – General Plane motion of simple rigid bodies such	ch a	as c	ylin	der,		
disc/wheel and s	phere.			1			
	TOTAL PER	RIO	DS	4	5		
COURSE OUT	COMES:						
At the end of the	e course, learners will be able to						
CO1: Solve pro	blems on particles and rigid bodies using the concept of static equ	ilib	rium	1.			
CO2: Interpret t	he effect of structure on acting forces						
CO3: Calculate	the center of gravity and moment of inertia of the given geometry						
CO4: Determine a suitable method for solving problems on kinematics and kinetics of particles							

CO5: Predict the effect of friction in rigid bodies.

TEXT BOOKS:

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
- 2. Meriam J.L and Kraig L.G, 'Engineering Mechanics-Statics and Dynamics', 9th Edition, John Wiley & sons, 2021.
- 3. Vela Murali, "Engineering Mechanics", 3rd Edition, Oxford University Press, 2017.

REFERENCES:

- 1. Hibbler, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education (2010).
- 2. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics",4th Edition, Pearson Education (2006)
- 3. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., (2005).
- 4. Bhavikatti, S.S, and Rajashekarappa, K.G., "Engineering Mechanics", 5th Edition, New Age International (P) Limited Publishers, 2015.
- 5. Kumar, K.L., "Engineering Mechanics", 3rd Revised Edition, Tata McGraw-Hill Publishing Company, 2008.

21CH103	ENVIRONMENTAL SCIENCE	L	Т	Р	С		
	(Common to all B.E / B.Tech. Programmes)	2	0	0	2		
COURSE	OBJECTIVES:						
• To describe the structure and function of an ecosystem and biodiversity							
• To inter	rpret the environmental impacts of natural resources.						
• To demonstrate causes, effects and control measures of different types of pollution.							
• To man	• To manipulate the importance of disaster management, environmental ethics and values.						
To dram	natize the important social issues and sustainable practices.						
UNIT-I	ENVIRONMENT, ECOSYSTEM AND BIODIVERS	SITY			6		
Multidiscip ecosystem- species-red biodiversity in-situ and	 blinary nature of environmental studies - ecosystem- general ecological succession-biodiversity-types-values of biodiversity data book- hot spots of biodiversity-criteria- hot (man-animal conflicts, habitat loss, poaching)-case studied ex-situ conservation. 	ral struc ersity- en ot spots es-conse	ture and ndangere in Ir rvation o	functio ed and e idia-thre of biodi	n of an ndemic eats to versity-		
UNIT-II	NATURAL RESOURCES AND ITS ENVIRONMEN	TAL I	МРАСТ	'S	6		
Natural res deforestation overgrazing impacts of	sources-forest resource-ecological functions – causes, ef on-water resource-sources-conflict over water-dams benefi g- impacts of over grazing- impacts of modern agriculture- wind mills and solar panels- role of an individual in conser	fects an ts and p energy p vation c	d contro roblems resource of natural	ol meas food re enviror resourd	ures of source- nmental ces.		
UNIT III	ENVIRONMENTAL POLLUTION AND CONTROL	L			6		
treatment-s managemen water(preve managemen	oil pollution-causes, effects-solid waste management– nt-Pollution control acts-air(prevention and contro ention and control of pollution) act,1974- wildlife (p nt rules,2016-case studies - role of an individual in control	e-waste ol of rotection of pollu	- cause pollution) act,1 ⁴	s, effec on) ac 972 -	ets and et,1981- e-waste		
UNIT IV	DISASTER MANAGEMENT AND ENVIRONMEN	TAL E	THICS		6		
Disaster ma case studio conservatio	anagement-causes, effects and management of- flood, land es- environmental ethics- value education-traditional on-rain water harvesting-watershed management.	lslide, e value s	arthquak ystems	e and ts in Indi	a-water		
UNIT V	SOCIAL ISSUES AND SUSTAINABLE PRACTICE	S			6		
Unsustainable development- social issues-climate change-causes, effects and control measures- global warming-causes, effects and control measures-Acid rain-causes, effects and control measures- ozone layer depletion-causes, effects and control measures-nuclear accident and holocausts-EIA- Sustainable development-goals-target- green buildings- ISO 14000 series.							
COURSE	OUTCOMES : At the end of the course, learners will be al	ole to	1				
 COURSE OUTCOMES : At the end of the course, learners will be able to CO1: Explain the concept, structure and function of an ecosystem and biodiversity. CO2: Demonstrate the environmental impacts of natural resources. CO 3: Illustrate the suitable management method for pollution control. CO 4: Relate the proper way of managing disaster with environmental ethics. CO 5: Apply social issues and adopt suitable sustainable practices. Text Books: 1 Kaushik A & Kaushik C P. "Environmental Science and Engineering" 6th Edition New Age 							
1. Kaushik, A & Kaushik. C.P., Environmental Science and Engineering, o Edition, New Age							

đ

Bď

International, 2018.

- 2. Garg S.K & Garg, Ecological and Environmental studies, Khanna Publishers, 2015.
- 3. Wright &Nebel, Environmental science towards a sustainable future, 12thEditon, Prentice Hall of India Ltd, 2015.

Reference Books:

- 1. ErachBharucha, "Text book of Environmental studies for Undergraduate courses", 3rd Edition, UGC, 2021.
- 2. Ravi P. Agrahari, Environmental ecology, Biodiversity, climatic change & Disaster management, 1st Edition, McGraw Hill, 2020
- 3. Benney Joseph, "Environmental Science and Engineering", 1st Edition, McGraw Hill Education (India) Pvt Ltd, New Delhi, 2017.

BoS Chairmar

					1		
	BASIC ELECTRICAL AND ELECTRONICS	L	Т	Р	C		
21EE103							
	(Theory with Practical Course)	3	0	2	4		
	(Common to B.E., Civil Engg. & Mechanical Engg.)						
COURSE OB							
• To out	ine the basics of electric circuits and analysis						
• To clas	sify wires and domestic wiring						
• To summarize the working principles and application of electrical machines							
To outline the characteristics of semiconductor devices							
To exp	lain the functional elements and working of transducers						
UNIT I	ELECTRICAL CIRCUITS				9		
DC Circuits:	Circuit Components: Conductor, Resistor, Inductor, Capacitor	– Oł	ım's	Lav	N -		
Kirchhoff's La	ws – Simple problems- Nodal Analysis, Mesh analysis with Indepen	ndent	sourc	es c	only		
(Steady state)							
Introduction to	AC Circuits and Parameters: Waveforms, Average value, RMS Va	lue, I	nstan	tane	ous		
power, real por	wer, reactive power and apparent power, power factor.						
UNIT II MAGNETIC CIRCUITS AND ELECTRICAL INSTALLATIONS 9							
Magnetic circu	uits-definitions-MMF, flux, reluctance, magnetic field intensity, flux	dens	ity, fi	ring	ing,		
self and mutua	l inductances-simple problems.						
Domestic wiri	ng, types of wires and cables, earthing, protective devices- switch,	fuse	unit	- sa	fety		
precautions an	d First Aid.						
UNIT III	ELECTRICAL MACHINES				9		
Construction	and Working principle- DC Separately and Self excited Gener	ators,	Тур	es	and		
Applications.	Working Principle of DC motors, Types and Applications. Cons	tructio	on, W	Vork	cing		
principle and	Applications of Transformer, working of Three phase Alternator	and	Three	e Ph	ase		
Induction Mot	or.						
UNIT IV	ANALOG & DIGITAL ELECTRONICS				9		
Resistor, Induc	ctor and Capacitor in Electronic Circuits- Silicon & Germanium – PN	J June	tion	Dio	des,		
Zener Diode –	Characteristics Applications – Bipolar Junction Transistor-Biasing, Re	ectifie	r.				
Review of nun	ber systems, binary codes, Combinational logic - representation of lo	gic fu	nction	ns.			
UNIT V	INSTRUMENTATION SYSTEM				9		
Classification	of instruments – Operating Principles of indicating Instruments and D	igital	Energ	зу			
meter. Strain g	auge, LVDT, differential pressure transducer, optical and digital trans	ducer	s, Sm	art			
sensors, Thern	nal Imagers.						
		4L: 4	5 PE	RIC	DS		
PRACTICAL	COURSE				15		
List of Experiments							
--	--						
1. Verification of Ohms Laws							
2. Verification of Kirchhoff's Laws							
3. Residential Wiring							
4. Load test on DC Shunt Motor							
5. Characteristics of PN Diode							
6. Characteristics of Zener Diode							
7. Ripple factor calculation for half wave rectifier							
8. Measurement of displacement of LVDT							
	TOTAL: 60 PERIODS						
OUTCOMES: At the end of the course, learners will be able to:							
CO1. Summarize the electric circuit parameters for simple problems							
CO2: Outline the safety precautions in electrical installation							
CO3. Explain the working principle and applications of electrical machin	nes						
CO4. Show VI characteristics of semiconductor devices							
CO5. Demonstrate the types and operating principles of sensors and tran	sducers						
TEXT BOOKS:							
 Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engine McGraw Hill Education, 2020 	eering", 2 nd Edition,						
 S.K.Bhattacharya "Basic Electrical and Electronics Engineering", 2nd Education, 2017. 	¹ Edition Pearson						
3. Sedha R.S., "A textbook book of Applied Electronics", S. Chand & C	Co., 2008						
4. James A .Svoboda, Richard C. Dorf, "Dorf's Introduction to Electric	Circuits", Wiley, 2018.						
5. A.K. Sawhney, Puneet Sawhney 'A Coursein Electrical & Electronic	Measurements						
&Instrumentation', Dhanpat Rai and Co, 2015.							
REFERENCES							
1. Kothari DP and I.J Nagrath, "Basic Electrical Engineering"	', 4 th Edition, McGraw						
HillEducation, 2019.							
2. Thomas L. Floyd, 'Digital Fundamentals', 11 th Edition, Pearson Edu	cation, 2017.						
3. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hi	Il Education; 7 th Edition,						
2017.							
4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", McGrawHill, 2002.	Schaum' Outline Series,						
5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New De	elhi, 2010						

ឲ BoS Chairman

	21EM101	ENGINEERING PRACTICES LABORATORY	L	Т	Р	С
2112111111		(Common to all B.E / B.Tech. Programmes)	0	0	4	2
CC	OURSE OBJE	CTIVES:				
•	To draw pip	e line plan; laying and connecting various pipe fittings use	d ir	n co	omm	on
	household pl	umbing work; Sawing; planing; making joints in wood mat	erial	ls u	sed	in
	common hous	sehold wood work.				
•	To demonstra	te the basic switch board wiring, fluorescent lamp wiring and	stair	cas	se w	iring
	using various	electrical components.				1
•	To choose var	trous joints in steel plates using arc welding work and machining	vari	ous	simj	sie
_	To build a trai	wout of metal short using short metal work				
•	To build a tra	y out of metal sheet using sheet metal work.	ר חי	0.044	L	
•	ST OF FXPFR	ECTOME CIrcuit and testing for soldering and desoldering using PC	. В 0	oarc	1.	
	SI OF EXTER					
		DADT I				
СІ	VII ENCINE	FDINC DDACTICES				
рі	UMBING WO					
11	Connecting	a various basic nine fittings like valves tans counling un	ions	re	duce	rc
	elbows ar	d other components which are commonly used in house	ahol	, ю. d	uucc	15,
	Preparing 1	numbing line sketches		u.		
	• I aving pin	e connection to the suction side of a nump				
	 Laying pip Laying pip 	be connection to the delivery side of a pump				
	Connecting	a pines of different meterials: Motel plastic and flexible	nina		ad	in
	+ Connecting	appliances	pipe	s u	scu	111
w	OOD WORK:	upphanees.				
•••	• Sawing					
	 Planning a 	nd Making joints like T-Joint, Cross lap and Dovetail joint				
		na maning joints into 1 voint, cross up and 20 voiai joint				
		PART – II				
EI	LECTRICAL H	ENGINEERING PRACTICES				
	Introductio	on to switches, fuses, indicators and lamps - Basic switch boar	d v	virin	ıg w	ith
	lamp, fan a	and three pin socket				
	• Staircase v	viring				
	• Fluorescen	at Lamp wiring with introduction to CFL and LED types.				
	• Energy me	eter wiring and related calculations/ calibration				
	• Study of Ir	on Box wiring and assembly				
	• Study of F	an Regulator (Resistor type and Electronic type using Diac/Triac/	quac	lrac))	
	• Measurem	ent of resistance to earth of an electrical equipment.				
		GROUP – B (MECHANICAL & ELECTRONICS)				
		30				

PART III

MECHANICAL ENGINEERING PRACTICES

WELDING WORK:

- Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
- Practicing gas welding.

BASIC MACHINING WORK:

- Usage of Spanners and screw drivers
- Facing and Turning.
- Taper Turning

ASSEMBLY WORK:

- Assembling a centrifugal pump.
- Assembling a household mixer.
- Assembling an air conditioner.

SHEET METAL WORK:

• Making of a square tray

FOUNDRY WORK:

• Demonstrating basic foundry operations.

PART IV

ELECTRONIC ENGINEERING PRACTICES

SOLDERING WORK:

• Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:

• Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:

- Study elements of smart phone.
- Assembly and dismantle of computer / laptop

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO1: Build various plumbing joints
- CO2: Develop various carpentry joints.
- CO3: Construct various wiring electrical joints in common household electrical wire work.
- CO4: Construct various welded joints, sheet metal and basic machining operations
- CO5: Develop the electronic circuit for soldering and testing using PCB board.

	TDANSEODMS AND DADTIAL DIFFEDENTIAL	L	Т	Р	С
21MA201	I KANSFORWS AND FAR HAL DIFFEREN HAL FOULTIONS				
	(Common to R F CIVII Engg ECE & MECH Engg)	3	2	0	4
COURSEC	(Common to D.E. CIVIL Engg., ECE & MECH. Engg.)				
	by a various methods of Laplace transforms for efficiently solving the prob	Jam	a tha	tocc	1112
• 10 u	rious branches of engineering disciplines	nem	s tila		uI
	lontify Equations of engineering disciplines.	ina			
• 10 K	unling Fourier series which is essential to many applications in engineering	ing.	aa th	at ma	dal
• 10 8	xplain the mathematical tools for the solutions of partial differential equ	atio	is un	at me	baer
sever	al physical processes.	f			
• 10 82	xprain the student with Fourier transform techniques used in wide variety	/ 01	situa	tions	•
• 10 d	evelop Z transform techniques to solve difference equations for discrete	tim	e sys	tems	10
	LAPLACE TRANSFORM				12
Laplace tra	nsform- conditions for existence – I ransform of elementary functions – B	asic	prop	pertie	es –
First shifti	ng theorem – Iransform of derivatives on $t f(t), f(t)/t$ and per	10d1	c tu	nctio	ns-
Transform	of unit step function and impulse functions. Inverse Laplace trans	forr	n by	par	tial
function m	ethod and convolution theorem (excluding proof)-Initial and finial	valu	e th	eorei	ns-
Solutions of	of linear ODE of second order with constant coefficients using La	plac	e tr	ansfo	orm
techniques.					
UNIT II	FOURIER SERIES				12
Dirichlet's c	onditions - General Fourier series odd and even functions - Half range	sin	e ser	ies –	half
range cosine	series – Parseval's identity – Harmonic Analysis.				
UNIT III	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS				12
Classificatio	ns of PDE – Solutions of one dimensional wave equations – one dimen	sion	al eq	uatio	on of
heat conduc	tion - Steady state solution of two dimensional equation of heat cond	ucti	on (e	exclu	ding
insulated edg	ges).				
UNIT IV	FOURIER TRANSFORMS				12
Statement of	Fourier integral theorem – Fourier transform pair – Fourier sine and c	osin	e tra	nsfoi	rm –
Properties -	Transforms of simple functions - convolution theorem - Parseval's iden	tity.			
UNIT V	Z- TRANSFORMS AND DIFFERENCE EQUATIONS				12
Z- Transform	ns – Elementary properties – Inverse Z- Transforms (Using partial fract	ions	and	resid	ues)
– Convolutio	on theorem – Formation of difference equations – Solution of difference	e ec	luatio	ons u	sing
Z-transforms	8.				
	TOTAL	L:6	0 PE	RIO	DS
COURSE C	UTCOMES:				
At the end of	f the course, learners will be able to				
CO1: Calcu	alate Laplace transform and inverse Laplace transform of different function	ions			
CO2: Expr	ess the Fourier series expansion to represent the given function in the give	ven			
inter	val.				
CO3: Class	ify the second order PDE and to know about solving initial and final				
L	32 A. P.R. Poular's				

Bos Chairman R-2021 (CBCS)

value problems.

- CO4: Apply Fourier transform techniques to evaluate the given integral.
- CO5: Solve the given difference equations using Z-transforms.

TEXT BOOKS:

- 1. Kreyszig Erwin, "Advanced Engineering Mathematics ", 10th Edition, John Wiley and Sons, New Delhi, 2016.
- 2. Peter V.O. Neil "Advanced Engineering Mathematics", 7th Edition, Cengage, New Delhi, 2012.
- **3.** Glyn James, "Advanced Modern Engineering Mathematics", 4th Edition, Pearson Education, 2016.

REFERENCES:

- Grewal.B.S. "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2018.
- 2. Wylie C. R. and Barrett L. C "Advanced Engineering Mathematics", 6th Edition, Tata McGraw-Hill, New Delhi, 2012.
- 3. Datta K.B., "Mathematical Methods of Science and Engineering", 2nd Edition, Cengag Learning India Pvt Ltd, Delhi, 2013.

21ME201

ENGINEERING THERMODYNAMICS

L Т Р С 3 0 3 0

9

9

COURSE OBJECTIVES:

- To demonstrate units and notations in Thermodynamics.
- To apply the principles of thermodynamics and to use it in accounting for the bulk behaviour of the simple physical systems.
- To integrate study of thermodynamic principles, state and relations. •
- To apply principles of psychrometric and properties of pure substances. •
- To demonstrate basic concepts of Vapour power cycles.

BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS UNIT I 9 Basic concepts - concept of continuum, macroscopic approach. Thermodynamic systems closed, open and isolated. Property, state, path and process, quasi-static process, work, modes of work, Zeroth law of thermodynamics - concept of temperature and heat. First law of thermodynamics - application to closed and open systems, steady flow process with reference to various thermal equipment.

UNIT II SECOND LAW OF THERMODYNAMICS

Second law of thermodynamics - Kelvin-Planck and Clausius statements of second law, Reversibility and irreversibility. Carnot theorem, Carnot cycle, reversed Carnot cycle, efficiency, Coefficient of Performance (COP). Thermodynamic temperature scale, Clausius inequality, concept of entropy, entropy of ideal gas, principle of increase of entropy -Availability and Unavailability (Qualitative treatment).

UNIT III PROPERTIES OF PURE SUBSTANCE

Properties of pure substances, thermodynamic properties of pure substances in solid, liquid and vapour phases, phase rule, P-V, P-T, T-V, T-S, H-S diagrams, PVT surfaces, thermodynamic properties of steam, Calculations of work done and heat transfer in non-flow and flow processes. Rankine cycle.

UNIT IV | IDEAL, REAL GASES AND THERMODYNAMIC RELATIONS

Properties of ideal and real gases, equation of state, Avogadro's Law, Van der Waal's equation of state, compressibility factor, Exact differentials. Thermodynamic Relations, Maxwell's Equations, Tds equations, Clausius- Clapeyron Equation, Thermodynamic relations for changes in Entropy, Enthalpy & Internal Energy, Joule-Thomson coefficient & inversion curve.

PROPERTIES OF MIXTURES AND PSYCHROMETRY UNIT V

9 Ideal gas mixtures - Evaluation of properties, Dalton's law of partial pressure, properties of airwater vapour mixtures: DBT, WBT, RH, dew point temperature, degree of saturation, thermodynamic wet bulb temperature, enthalpy of moist air, psychrometric processes, bypass factor, calculating the properties of air using psychrometric table and chart.

34

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO1: Demonstrate the first law of thermodynamics for systems and processes
- CO2: Apply the second law of thermodynamics for systems and processes
- CO3: Assess the thermodynamics laws for pure substances
- CO4: Apply the thermodynamics relations for ideal and real gases.
- CO5: Demonstrate the psychrometric processes in air-water vapor mixtures.

TEXT BOOKS:

- 1. Yunus A. Cengel & Michael A. Boles, "Thermodynamics-An Engineering Approach", 9th Edition, 2019.
- 2. R.K.Rajput, "A Text Book of Engineering Thermodynamics ", 6th Edition, Laxmi Publications, 2019.
- 3. Michael J. Moran, Howard N. Shapiro, "Fundamentals of Engineering Thermodynamics", 8th Edition, Willey, 2014.

REFERENCES:

- 1. Arora C.P, "Thermodynamics", 12th Edition, Tata McGraw-Hill, 2017.
- 2. Borgnakke & Richard E. Sonnatag, "Fundamental of Thermodynamics", 8th Edition, 2016.
- 3. Chattopadhyay, P, "Engineering Thermodynamics", 2nd Edition, Oxford University Press, 2016.
- 4. Nag. P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw-Hill, 2017.

BoS Chairman

21ME202	STRENGTH OF MATERIALS FOR MECHANICAL	L	Т	Р	С
2111112202	ENGINEERS	3	0	0	3
COURSE OBJ	ECTIVES:				
• To apply	the concepts of stress, strain, principal stresses and principal plan	es.			
• To use t	he concept of shearing force and bending moment due to ext	erna	l lo	ads	in
determin	ate beams and their effect on stresses.				
To calcul	ate stresses and deformation in circular shafts and helical spring d	lue t	o to	rsio	n.
To comp	ute slopes and deflections in determinate beams by various metho	ds.			
To predic	et the stresses and deformations induced in thin and thick cylindric	cal s	hell	s	
UNIT I STI	RESS, STRAIN AND DEFORMATION OF SOLIDS				9
Rigid bodies and	l deformable solids – Tension, Compression and Shear Stresses -	Defe	orma	atio	1 of
simple and comp	oound bars – Thermal stresses – Elastic constants – Volumetric st	rains	s – S	Stres	sses
on inclined plane	es – principal stresses and principal planes – Mohr's circle of stres	SS			
UNIT II TR	ANSVERSE LOADING ON BEAMS AND STRESSES IN BE	AM	[9
Beams – types	transverse loading on beams - Shear force and bending mor	nent	in	bea	ams
– Cantilevers – S	Simply supported beams and over – hanging beams. Theory of sin	mple	e bei	ndin	g –
bending stress di	stribution – Load carrying capacity – Proportioning of sections.				
UNIT III TO	RSION OF SHAFTS AND SPRINGS			9	9
Torsion formula	tion stresses and deformation in circular and hollows shafts - S	tepp	bed	shaf	ts -
Deflection in sh	afts fixed at the both ends - Stresses in helical springs - Defle	ctio	n of	hel	ical
springs, carriage	springs.				
UNIT IV DE	FLECTION OF BEAMS				9
Double Integration	ion method - Macaulay's method - Area moment method for	com	puta	ntior	ı of
slopes and defle	ections in beams - Conjugate beam and strain energy - Maxw	ell's	rec	cipro	ocal
theorems					
UNIT V TH	IN CYLINDERS, SPHERES AND THICK CYLINDERS				9
Stresses in thin o	cylindrical shell due to internal pressure circumferential and longi	tudi	nal	stres	sses
and deformation	in thin and thick cylinders - spherical shells subjected to inte	rnal	pre	ssur	е –
Deformation in s	spherical shells – Lame's theorem				
	TOTAL:	45]	PER	RIO	DS
COURSE OUT	COMES:				
At the end of the	course, learners will be able to				
COI: Apply Ho	oke's law in structural members.				
CO2: Construct	the shear force and bending moment diagrams for various beams.				
CO3: Interpret t	the clone and deflection of beams				
CO4. Calculate	stresses and deformations in cylindrical and spherical shells				
TEXT BOOKS	•				
1. Bansal. R.K.	, "Strength of Materials", 6 th Edition, Laxmi Publications (P) Ltd.	, 202	22		
2. Egor. Popov	"Engineering Mechanics of Solids" 2 nd Edition, Prentice Hall of I	India	a, 20)15.	
3. Subramaniar	R., "Strength of Materials", 3 rd Edition, Oxford University Press,	Ox	ford		
	36				

Higher Education Series, 2016.

REFERENCES:

- 1. Jindal U.C., "A text book on Strength of Materials", 2nd Edition, Asian Books Pvt. Ltd., 2012
- 2. Ferdinand P. Beer, Russell Johnson, J.r. and John T. Dewolf "Mechanics of Materials", 7th Edition, Tata McGraw Hill Publishing 'co. Ltd., 2014.
- 3. Hibbeler, R.C., "Mechanics of Materials", 9th Edition, Pearson Education, Low Price Edition, 2018.

10 **BoS Chairman**

21ME203	ENGINEERING METALLURGY (Theory with Practical Course)	L	T	P	C
COUDSE OD U		3	U	2	4
COURSE OBJ					
• To apply the	concepts of alloys, microstructure and properties of steel and iror	1.			
• To illustrate	the concept of various heat treatment process and its effects on ma	ateri	als.		
• To demonstr	ate the composition and properties of various ferrous and non-ferr	ous	met	als.	
• To relate the	composition and properties of various non-metallic materials.				
• To illustrate	deformation mechanisms and mechanical properties of materials.				
UNIT I AL	LOYS AND PHASE DIAGRAMS				9
Crystal structure	e – BCC, FCC and HCP structure – unit cell, Crystallograph	nic p	olan	es a	and
directions, Cons	stitution of alloys – Solid solutions, substitutional and inters	stitia	1 –	ph	ase
diagrams, Isomo	orphous, eutectoid, eutectic, peritectic, and peritectroid reaction	is, li	ron .	– lı	ron
carbide equilibri	um diagram. Classification of steel and cast Iron, microstructure,	prop	perti	les a	and
applications.	Α Τ ΤΡΕ Α ΤΜΕΝΤ			1	0
Definition – Fu	ll annealing stress relief recrystallisation and spheroidising -	- nc	orma	alisi	σ nσ
hardening and	Tempering of steel Isothermal transformation diagrams – c	:ooli	ng	cur	ng, ves
superimposed or	1 I.T. diagram CCR – Hardenability, Jominy end quench test -	Aus	tem	peri	ng.
martempering –	case hardening, carburizing, Nitriding, cyaniding, carbonitriding	g – 1	Flan	ne a	and
Induction harder	ing – Vacuum and Plasma hardening.	_			
UNIT III FEI	RROUS AND NON-FERROUS METALS				9
Effect of alloyin	ng additions on steel- α and β stabilisers– stainless and tool st	teels	—]	HSI	LA,
Maraging steels	- Cast Iron - Grey, white, malleable, spheroidal - alloy cast iron	ns, C	Copp	er a	and
copper alloys -	- Brass, Bronze and Cupronickel - Aluminium and Al-Cu -	- pr	ecip	oitati	ion
strengthening tre	atment – Bearing alloys, Mg-alloys, Ni-based super alloys and Ti	tani	um a	allo	ys.
UNIT IV NO	N-METALLIC MATERIALS				9
Polymers – typ	pes of polymer, commodity and engineering polymers – H	rop	ertie	S 8	and
applications of	various thermosetting and thermoplastic polymers (PP, PS, I	PVC	, P.	NIN Dha	IA,
formaldehydes)	DS, PI, PAI, PPO, PPS, PEEK, PIFE, Polymens – Ulea Engineering Ceramics – Droperties and applications of Al2O2	an		rne.	1101 N/A
PSZ and SIAI	N -Composites, Classifications, Metal Matrix and FRP - A	, on nnli	cati	0131 018	of
Composites	Sive composites classifications wetar wattix and the	'PPn	can	0115	01
ME	CHANICAL PROPERTIES AND DEFORMATION			Τ	0
UNIT V ME	CHANISMS				9
Mechanisms of	plastic deformation, slip and twinning – Types of fracture – Testin	ng o	f ma	ateri	als
under tension, c	ompression and shear loads - Hardness tests (Brinell, Vickers a	nd I	Rocl	kwe	ll),
hardness tests,	Impact test lzod and charpy, fatigue and creep failure mechan	nism	s. S	urfa	ace
Treatments: Har	d facing - Hard chromium plating – Metal Spraying.				
	TOTAL:	45 I	PER		DS
PRACTICAL C				1	5
LISI OF EXPE	KIIVIEIN I S:				
1. Tension test 2 Dauble 1^{1}	on a mild steel fou				
2. Double shear	test on whild steel and Aluminium rods				
	38				

- 3. Torsion test on mild steel rod
- 4. Impact test on metal specimen
- 5. Hardness test on metals Brinell and Rockwell Hardness Number
- 6. Deflection test on beams
- 7. Compression test on helical springs
- 8. Strain Measurement using Rosette strain gauge
- 9. Effect of hardening- Improvement in hardness and impact resistance of steels.
- 10. Tempering- Improvement Mechanical properties Comparison
 - (i) Unhardened specimen
 - (ii) Quenched Specimen and
 - (iii) Quenched and tempered specimen.
- 11. Microscopic Examination of
 - (i) Hardened samples and
 - (ii) Hardened and tempered samples.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO1: Interpret material constituents from phase diagram
- CO2: Prepare the various heat treatment process
- CO3: Predict the effect of alloying elements on ferrous and non-ferrous metals.
- CO4: Illustrate the properties and applications of non-metallic materials.

CO5: Predict the various mechanical properties of materials.

TEXT BOOKS:

- Avner, S.H, "Introduction to Physical Metallurgy", 2nd edition, McGraw Hill Education, 2017.
- 2. Williams D Callister, "Material Science and Engineering An Introduction" 9th Edition, Wiley India Pvt Ltd, 2013.
- 3. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", 9th Edition, Prentice Hall of India Private Limited, 2009.

REFERENCES:

- 1. Raghavan.V, "Materials Science and Engineering", 6th Edition, Prentice Hall of India Pvt. Ltd., 2015.
- 2. U.C.Jindal, "Engineering Materials and Metallurgy", 1st Edition, Pearson, 2011.
- 3. Upadhyay. G.S. and Anish Upadhyay, "Materials Science and Engineering", 1st Edition, Viva Books Pvt. Ltd., New Delhi, 2006.

21ME204

MANUFACTURING TECHNOLOGY - I (Theory with Practical Course)

L	Т	Р	С
r	0	2	4

9

9

9

15

COURSE OBJECTIVES:

- To apply the working principles of various metal casting processes.
- To demonstrate and select suitable materials for various engineering applications.
- To illustrate the working principles of various metal joining processes.
- To experiment various metal forming processes.
- To demonstrate the working principles of plastics moulding.

UNIT I METAL CASTING PROCESSES

Sand Casting: Sand Mould - Type of patterns - Pattern Materials - Pattern allowances Moulding sand Properties – Cores – Types and applications – Melting furnaces: Blast and Cupola Furnaces; Principle of special casting processes: Shell - investment –Defects in Sand casting.

BASIC MACHINING PROCESSES UNIT II

Centre lathe, constructional features, specification, operations - taper turning methods, thread cutting methods, special attachments, machining time and power estimation. Shaper - Types of operations. 9

UNIT III JOINING PROCESSES

Operating principle, basic equipment, merits and applications of: Fusion welding processes: Gas welding - Types - Flame characteristics; Manual metal arc welding - Gas Tungsten arc welding - Gas metal arc welding - Submerged arc welding - Electro slag welding; Operating principle and applications of: Resistance welding - Plasma arc welding. Weld defects: types, causes and cure.

UNIT IV METAL FORMING PROCESSES

Hot working and cold working of metals - Forging processes - Open, impression and closed die forging – forging operations. Rolling of metals– Types of Rolling – Flat strip rolling – shape rolling operations-Drawing Process: Wire and tube drawing - Sheet metal characteristics shearing, bending and drawing operations - Stretch forming operations - Formability of sheet metal – Working principle and applications. 9

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

Plastic forming Processes: Plastics, general properties and applications of thermo plastics and thermosets, Forming/shaping and applications of plastics: Extrusion, Injection Moulding, Blow Moulding, Rotational Moulding, Thermoforming and Compression Moulding - Powder metallurgy - Introduction - Process - Applications.

40

PRACTICAL COURSE

LIST OF EXPERIMENTS:

- 1. Preparation of green sand moulds.
- 2. Taper & eccentric turning
- 3. Internal thread cutting
- 4. External thread cutting
- 5. Knurling
- 6. Square head shaping
- 7. Hexagonal head shaping
- 8. Fabrication of simple structural shapes using Arc Welding

BoS Chairman

TOTAL: 45 PERIODS

- 9. Joining of plates using arc welding
- 10. Manufacturing of simple sheet metal components using shearing and bending operations

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO1: Predict the various metal casting processes.
- CO2: Relate the various metal joining processes.
- CO3: Illustrate the various metal forming processes.
- CO4: Interpret the various sheet metal processes.
- CO5: Demonstrate various types of manufacturing of plastic components.

TEXT BOOKS:

- 1. Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", 4th Edition, Tata Machgraw Hill, 2017
- 2. Kalpakjian. S, "Manufacturing Engineering and Technology", 7th Edition, Pearson Education India, 2014.
- 3. Roy. A. Lindberg, "Processes and Materials of Manufacture", 3rd Edition, Pearson education, 2015

REFERENCES:

- 1. Hajra Chouldhary S.K and Hajra Choudhury. AK. "Elements of workshop Technology", volume I and II, 15th Edition, Media promoters and Publishers Private Limited, 2008.
- 2. Paul Degarmo E, Black J.T and Ronald A. Kosher, "Materials and Processes, in Manufacturing" 13th Edition, Prentice Hall of India, 2019.
- 3. Sharma, P.C., "A Text book of production Technology", 4th Edition, S.Chand and Co. Ltd., 2014.

B.E. – MECHANICAL ENGINEERING (I TO VIII SEMESTERS)

21FF216	ELECTRICAL DRIVES AND CONTROL	L	Т	Р	С
211/1/210	(Theory with Practical Course)	3	0	2	4
COURSE OB	JECTIVES:				
• To explain	the basic concepts of different types of electrical ma	chine	es.		
• To illustrat	e the Drive motor characteristics.				
• To summar	ize different methods of starting DC motors and ind	uction	n motors.		
• To relate th	e conventional and solid-state drives for DC drives.				
• To compare	e the conventional and solid-state drives for AC drive	es.			0
	INTRODUCTION	1 1	• • •	1 . •	9
Basic Element	s – Types of Electric Drives – factors influencing t	the ch	noice of e	lectrica	al drives –
for drive motor	oling curves – Loading conditions and classes of a	uty – tion f	Selection	1 of po	wer rating
	DRIVE MOTOR CHARACTERISTICS		actors		0
Mechanical ch	DRIVE MOTOR CHARACTERISTICS	rious	types of	f load	9 and drive
motors – Brak	ing of Electrical motors – DC motors: Shunt series	- sir	igle nhase	and t	and drive
induction moto	rs – Specifications and sizing of Machines	511			nee phase
UNIT III	STARTING METHODS				9
Types of D.C	Motor starters – Typical control circuits for shunt a	nd se	ries moto	rs – T	nree phase
squirrel cage a	nd slip ring induction motors.				I
UNIT IV	SPEED CONTROL OF D.C. DRIVES				9
Speed control	of DC series and shunt motors – Armature and field	l cont	rol, Ward	-Leona	ard control
system - Using	controlled rectifiers and DC choppers -applications	•			
UNIT V	SPEED CONTROL OF A.C. DRIVES				9
Speed control	of three phase induction motor - Voltage control, v	oltag	ge / freque	ency co	ontrol, slip
power recovery	v scheme – Using inverters and AC voltage regulator	$s - a_j$	pplication	S.	
	COURCE		TOTAL	: 45 Pl	ERIODS
PRACTICAL					15
	APERIMENTS at an DC Shunt motor				
1. Load te	st on DC Sarias motor				
2. Load te	& Load characteristics of DC Shunt generator				
$\begin{array}{c} 3. \ 0.C.C \\ 4 \ 0 \ C \ C \end{array}$	& Load characteristics of DC Series generator				
5. Speed of	control of DC shunt motor (Armature, Field control)				
6. Dynam	ic Braking on DC Drives				
7. Regulat	tion of an alternator by EMF & MMF methods.				
8. Load te	st on three phase squirrel cage Induction motor				
9. Speed of	control of three phase slip ring Induction Motor				
10. Study	of DC & AC Starters				
			TOTAL	: 60 Pl	ERIODS
COURSE OU	TCOMES: At the end of the course, learners will be	e able	to		
CO1: Classify	different types of electrical drives				
CO2: Summar	Ze various characteristics of Drive motors and under	stand	their woi	rking p	rinciple.
CO3: Compare	t auitable Conventional and Solid state Electric drive	C mc	DC moto		
CO4. COIIstruc	Conventional and Solid-state Electric drives for AC	$-5 10\Gamma$		лs.	
CO3. Interpret		2 11100	013		
	42				
B.E. – MECHANIC	AL ENGINEERING (I TO VIII SEMESTERS) Bos Chairm	an	R	-2021 (0	CBCS)

TEXT BOOKS:

- 1. Vedam Subramanian, "Electric Drives Concepts and Applications", 2nd Edition, Tata McGraw-Hill, 2011.
- Nagrath.I.J & Kothari.D.P, "Electrical Machines", 4th Edition, Tata McGraw-Hill, 2010.
 Pillai.S.K "A First Course on Electric Drives", 3rd Edition, Wiley Eastern Limited, 2012.

REFERENCES

- 1. Singh. M.D., K.B.Khanchandani, "Power Electronics", 2nd Edition, Tata McGraw-Hill, 2006.
- 2. Partab. H., "Art and Science and Utilization of Electrical Energy", 6th Edition, Dhanpat Rai and Sons, 2017.
- 3. Gnanavadivel.J, Karthikeyan.J, Chitra Selvi.S, Yogalakshmi.P, "Electrical Drives and Control",4th Edition, Anuradha Publications, 2019.

21EN201	Interpersonal Skills Laboratory-Listening and Speaking	L	Т	P	С	
211211201	(B.E Mechanical Engineering)	0	0	2	1	
COURSE O	BJECTIVES:					
1. To de	1. To demonstrate their ability to comprehend English language in different accents and					
speak	fluently in neutral accent					
2. To d	evelop the English language skills required for the successf	ul u	nder	akin	g of	
acade	mic studies with primary emphasis on academic speaking and lis	stenir	ng sk	ills.		
3. To ch	oose appropriate spoken language and use in basic general class	room	con	versa	ation	
and to	o engage in specific academic speaking activities.					
4. To di	scriminate the language of general topics with academic domain					
5. To ex	press ideas effectively in presentations.					
UNIT I	Basic Pronunciation and Articulation				6	
Listening as	a key skill - Its importance - Speaking - To give personal info	ormat	ion	- Asl	k for	
personal info	ormation - Express ability - Enquire about ability - Ask for clarit	ficati	on Ii	mpro	ving	
pronunciatio	n -Sounds of English - Consonant Sounds - Pronunciation basic	cs - 7	Takir	ng leo	cture	
notes - Prep	aring to listen to a lecture - Articulate a complete idea as opp	osed	to p	orodu	icing	
fragmented u	tterances.					
UNIT II	Simple Conversations in English				6	
Listen to pro	cess information - Give information, as part of a simple explanat	ion -	Con	versa	ation	
starters: sma	ll talk - Sounds of English - Vowel Sounds - Stressing sylla	bles	and	spea	king	
clearly - Int	onation patterns - Compare and contrast information and ide	eas f	rom	mul	tiple	
sources - Co	nverse with reasonable accuracy over a wide range of everyday to	opics	•			
UNIT III	Greetings and Intonation				6	
Lexical chun	king for accuracy and fluency - Factors influence fluency - Into	onatio	on -	Deliv	ver a	
five -minute	informal talk - Greet - Respond to greetings - Describe health	h and	d syr	npto	ms -	
Invite and or	ffer - Accept - decline - Take leave - Listen for and follow th	e gis	t - I	Lister	n for	
detail						
UNIT IV	Non Verbal Communication in Presentation and Group Dis	cuss	ion		6	
Being an act	ive listener: giving verbal and non - verbal feedback - Extempor	re Ac	tivit	y - S	mall	
Talks - part	icipating in a group discussion - summarizing academic read	lings	and	llect	tures	
conversation	al speech listening to and participating in conversations - persuad	le.				
UNIT V	Academic Presentation				6	
Formal and	informal talk - Listen to follow and respond to explanation	ns, d	lirect	ions	and	
instructions	in academic and business contexts - Strategies for presentatio	ns a	nd ii	ntera	ctive	
communicati	on - Group/pair presentations - Negotiate disagreement in group	work	κ.			
	ΤΟΤΑΙ	2:30	PEI	RIOI	DS	
COURSE O	UTCOMES : At the end of the course, learners will be able to:					
CO1. Comp	rehend the spoken words of native speakers					
CO2. Respo	nd appropriately to the speeches of native speakers					
CO3. Take p	part in group discussions					

44 (Shor and) Bos Chairman R-2021 (CBCS)

CO4. Make effective presentations

CO5. Take part confidently and appropriately in both formal and informal conversations

TEXT BOOKS:

- 1. Ladousse, Gillian Porter. Role Play. Oxford University Press: Oxford, 2014
- **2.** Brooks, Margret. Skills for Success. Listening and Speaking. Level 4 Oxford University Press, Oxford: 2011.
- **3.** Richards, C. Jack. & David Bholke. Speak Now Level 3. Oxford University Press, Oxford: 2010

REFERENCES:

- 1. Bhatnagar, Nitin and Mamta Bhatnagar. Communicative English for Engineers and Professionals. Pearson: New Delhi, 2010.
- 2. Hughes, Glyn and Josephine Moate. Practical English Classroom. Oxford University Press: Oxford, 2014.
- 3. Vargo, Mari. Speak Now Level 4. Oxford University Press: Oxford, 2013.
- 4. Richards C. Jack. Person to Person (Starter). Oxford University Press: Oxford, 2006.

Stomatty BoS Chairman

	PROBABILITY, STATISTICS AND NUMERICAL	L	Т	Р	C
21MA204 METHODS				Δ	1
	3	2	U	4	
COURSE (DBJECTIVES:				
• To d	escribe the necessary basic concepts in probability				
• To e	xplain the concept of testing of hypothesis for small and large sample	s whi	ch pla	iys an	
impo	ortant role in real life problems.				
• To d	iscuss the basic concepts of solving algebraic and transcendental equ	ations	and r	umer	ical
tech	niques of integration which plays an important role in engineering an	1 tech	nolog	У	
disci	plines.				
• To d	escribe various techniques and methods of solving ordinary different	al equ	uation	s.	
• To e	xplain various techniques and methods of solving partial differential	equati	ions.		
UNIT I	PROBABILITY				12
Introduction	-Sample Spaces and Events-Axioms of Probability-Interpretations ar	d Pro	pertie	s of	
Probabilitie	s-Conditional Probabilities - Baye's theorem- Independence.				
UNIT II	TESTING OF HYPOTHESIS				12
Large samp	le test based on Normal distribution for single mean and difference of	mea	ns – T	ests b	ased
on t, $\chi 2$ and	F distributions for testing means and variances – Contingency table (T	est fo	r Indej	pende	ncy)
- Goodness	of fit.				
UNIT III	SOLUTION OF EQUATIONS AND NUMERICAL INTEGRA	ΓΙΟΝ	[12
Newton Rap	bhson method – Solution of linear system of equations: Gauss eliminat	on m	ethod	-Pivo	oting
– Gauss Jor	dan method – Gauss Seidel method – Numerical integration by Trape	zoida	l and S	Simps	son's
rule.					
UNIT IV	NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL				12
	EQUATIONS				
Taylor's set	ries method - Euler's method - Modified Euler's method - Fourt	h ord	er Ru	nge-ŀ	Kutta
method for	solving first order equation – Milne's Predictor and Corrector method	l – Ac	lam's	Bash	forth
predictor – o	corrector method for solving first order equation.				
UNIT V	BOUNDARY VALUE PROBLEMS IN ORDINARY AND PAR	TIAI	4		12
	DIFFERENTIAL EQUATIONS				
Finite differ	ence methods for solving second order two-point linear boundary va	lue p	roblen	ns - F	inite
difference t	echniques for the solution of two dimensional Laplace's and Po	isson	's equ	ation	s on
rectangular	domain - One dimensional heat flow equation by explicit methods	- C	One di	mensi	ional
wave equati	on by explicit method.				
	ТОТ	AL: (50 PE	RIOI	DS
COURSE (DUTCOMES:				
At the end o	of the course, learners will be able to				
CO1: U	se the basic concepts of Probability and Random variables.				
CO2 : E	xplain the test of hypothesis for small and large samples by using var	ious t	est		

h. P. Prokpalari Bos Chairman \mathcal{T}

R-2021 (CBCS)

Like t-test, F-test, Z-test and $\chi 2$ test.

- CO3: Apply a suitable method to solve algebraic and transcendental equations.
- CO4 : Explain the knowledge of various techniques and methods for solving first and second order Ordinary differential equations.
- CO5 : Solve the partial and ordinary differential equations with initial and Boundary conditions by Using certain techniques with engineering applications.

TEXT BOOKS:

- 1. JAY.L. Devore, "Probability and Statistics for Engineering and the Science", 8th Edition, Cengage Learning, 2012.
- 2. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis", 7th Edition, Pearson Education, Asia, New Delhi, 2006.
- 3. Johnson, R.A., Miller, I and Freund J, "Probability and Statistics for Engineers", 8th Edition, Pearson Education, Asia, 2015.

REFERENCES:

- S.C.Gupta, V.K.Kapoor, "Fundamentals of Mathematical Statistics", 11th Edition, Sultan Chand & Sons, 2015.
- 2. Chapra. S.C. and Canale. R.P, "Numerical Methods for Engineers", 5th Edition, Tata McGraw Hill, New Delhi, 2007.
- 3. S.K.Gupta, "Numerical Methods for Engineers", 7th Edition, New age international private Ltd publishers, 2015.

21ME205

MANUFACTURING TECHNOLOGY – II

L T P C 3 0 0 3

9

9

9

9

COURSE OBJECTIVES:

- To interpret the mechanism of chip formation
- To demonstrate the working procedure and various process of turning machine
- To demonstrate the working principle of drilling, milling and Gear cutting machines
- To interpret the various types of grinding and broaching machines
- To demonstrate the CNC program

UNIT I THEORY OF METAL CUTTING

Mechanics of chip formation, single point cutting tool, forces in machining, Types of chip, cutting tools– nomenclature, orthogonal metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability

UNIT II ADVANCED TURNING MACHINES

Capstan and turret lathes- tool layout – automatic lathes: semi-automatic – single spindle: Swiss type, automatic screw type – multi spindle.

UNIT III DRILLING, MILLING AND GEAR CUTTING MACHINES

Drilling, reaming, boring and tapping. Milling operations-types of milling cutter. Gear cutting – forming and generation principle and construction of gear milling, hobbing and gear shaping processes –finishing of gears.

UNIT IV ABRASIVE PROCESS AND BROACHING

Abrasive processes: grinding wheel – specifications and selection, types of grinding process– cylindrical grinding, surface grinding, centreless grinding and internal grinding- Typical applications – concepts of surface integrity, broaching machines: broach construction – push, pull, surface and continuous broaching machines

UNIT V CNC MACHINING

Numerical Control (NC) machine tools – CNC types, constructional details, special features, machining centre, part programming fundamentals CNC – manual part programming – micromachining – wafer machining.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

CO1: Illustrate the mechanism of material removal processes.

- CO2: Relate the constructional and operational features of centre lathe and other special purpose lathes
- CO3: Demonstrate the constructional and operational features of shaper, milling, and gear manufacturing process.
- CO4: Describe the grinding and other finishing processes.

CO5: Relate CNC part programming

TEXT BOOKS:

1. Rao. P.N "Manufacturing Technology - Metal Cutting and Machine Tools", 4th Edition, Tata McGraw-Hill, New Delhi, 2018.

- 2. Serope Kalpakjian and Steven R.Schmid, 'Manufacturing Engineering and Technology', 8th Edition, PHI, 2020.
- 3. Hajra Choudhury, "Elements of Workshop Technology", Vol-II, 15th Edition, Media Promoters 2016.

REFERENCES:

- 1. Paul Degarma E., Black J.T. and Ronald A. Kosher, "Materials and Processes, in Manufacturing", 8th Edition, Prentice Hall of India, 1997.
- 2. Sharma, P.C., "A Textbook of Production Technology", 10th Edition, S.Chand and Co. Ltd., 2004.
- 3. Geofrey Boothroyd, "Fundamentals of Metal Machining and Machine Tools", 3rd Edition, Mc Graw Hill, 2005.

BoS Chairman

21MF206	KINEMATICS AND DVNAMICS OF MACHINES	L	Τ	P	С
2111112200	KINEMATICS AND DINAMICS OF MACHINES	3	0	0	3
COURSE OBJ	ECTIVES:				
• To interp	pret the basic components and layout of linkages in the assemb	ly o	fa	syste	em
/machine					
• To apply	the principles of displacement, velocity and acceleration at any po	oint	in a	link	of
a mechar	nism.				
• To sketcl	the cam profile				
• To apply	the concepts of toothed gearing and kinematics of gear trains				
To illustr	ate the balancing of rotating and reciprocating masses			Т.	
UNIT I BAS	SICS OF MECHANISMS)
Mobility – Kutz four-bar chain an Angle – Descri generators, Univ	bach criterion, Gruebler's criterion – Grashof's Law – Kinematie ad slider crank chains – Limit positions – Mechanical advantage – ption of some common mechanisms – Quick return mechanism ersal Joint – rocker mechanisms.	c inv - Tra ms, 1	versi ansn Strai	ions nissi ght	of on
UNIT II KIN	JEMATICS OF LINKAGE MECHANISMS				9
Displacement, v	elocity and acceleration analysis of simple mechanisms – Grap	hice	ıl m	ethc	od-
Velocity and acc	celeration polygons – Velocity analysis using instantaneous centr	es –	- kin	ema	tic
analysis of simp	le mechanisms – Coincident points – Coriolis component of Acce	lera	tion		
UNIT III KIN	VEMATICS OF CAM MECHANISMS				9
Classification of	cams and followers - Terminology and definitions - Displacem	ent o	diag	ram	s –
Uniform velocit	y, parabolic, simple harmonic and cycloidal motions - Derivativ	es o	of fo	ollov	ver
motions – Layou	t of plate cam profiles – Specified contour cams – Circular arc an	d tar	ngen	it ca	ms
– Pressure angle	and undercutting – sizing of cams.				
UNIT IV GE	ARS AND GEAR TRAINS				9
Law of toothed	gearing – Involutes and cycloidal tooth profiles –Spur Gear te	rmir	iolog	gy a	ind
definitions –Gea	r tooth action – contact ratio – Interference and undercutting.	Heli	cal,	Bev	'el,
Worm, Rack and	Pinion gears [Basics only]. Gear trains – Sped ratio, train value	– P	arall	iel a	X1S
gear trains – Epi	cyclic Gear Trains			Τ.	
UNIT V BA	LANUING		1)
Static and dynam	nic balancing – Balancing of rotating masses – Balancing a single of	yiin	laer	eng	ine
- Balancing of J	sing machines Field balancing of discs and rotors	- B	nanc	ing	01
lilikages – Dalali		15	DFI		nc
COURSE OUT	COMES:	43			05
At the end of the	course learners will be able to				
CO1 Relate th	e fundamental principles of kinematics and kinetics for simple me	cha	nien	ns	
CO2: Sketch th	e velocity and acceleration diagram for simple mechanisms	And		.1.3.	
CO3: Sketch th	e profile of the cam mechanisms				
COA: Access the	e law of toothed gearing in various gear trains				

CO4: Assess the law of toothed gearing in various gear trains.

6

BoS Chairman

CO5: Calculate the balancing of rotating and reciprocating masses.

TEXT BOOKS:

- 1. Uicker, J.J., Penock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4th Edition, Oxford University Press, 2014.
- 2. Ratan, S.S, "Theory of Machines", 5th Edition, Tata McGraw-Hill, 2019.
- 3. R.S. Khurmi, "Theory of Machine", 14th Edition, S Chand, 2020.

REFERENCES:

- 1. Cleghorn. W. L, "Mechanisms of Machines", 2nd Edition, Oxford University Press, 2014
- 2. Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", 3rd Edition, Affiliated East-West Pvt. Ltd., New Delhi, 2006.
- 3. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.

BoS Chairman

		т	T	р	C
21ME207	THERMAL ENGINEERING	L 3	1	P 0	
COURSE OBJ	ECTIVES:	5	U	U	5
• To inter	rpret the principles of thermodynamics and gas power cycle				
To firter	nstrate the basic concepts of vanour nower cycles				
To define To exper	iment the performance of compressors				
To exper To apply	the thermodynamic concepts into various thermal application li	ke I	C		
engines a	and refrigeration	KU I	C		
To manir	vulate the principle of Refrigeration and Air conditioning system				
UNIT I GA	S POWER CYCLES			9)
Air Standard C	Cycles - Otto, Diesel, Dual, Brayton – Cycle Analysis, Per	forr	nanc	ce a	nd
Comparison.					
	R COMPRESSORS			9)
Classification a	nd working principle, work of compression with and with	out	clea	arano	ce.
Volumetric effic	ciency. Isothermal efficiency and Isentropic efficiency, working	ng p	rinc	iple	of
Multistage air co	ompressor and intercooling.	- o P		-p-•	01
UNIT III INT	TERNAL COMBUSTION ENGINES			9)
IC engine – Cla	ssification, working, components and their functions two stro	ke 8	zam	p; fo	our
stroke SI & amp	CI engines – comparison, of SI and CI engines.– Knocking – r	hen	ome	na a	nd
control. Ignition	systems – Magneto, Battery and Electronic, Lubrication and Coo	ling	svst	ems	
UNIT IV STI	EAM NOZZLE AND BOILER	0	5	9)
Types and Shape	es of nozzles, Flow of steam through nozzles, Critical pressure rat	io, V	/aria	ation	
of mass flow rate	e with pressure ratio. Effect of friction. Metastable flow. Boiler -	type	s an	d	
Comparison-Mo	untings and Accessories Boiler trial. IBR Certification.	• •			
UNIT V RE	FRIGERATION			9)
Vapour compres	ssion refrigeration cycle, Effect of Superheat and Sub-cooling	g, Pe	erfor	man	ice
calculations, W	orking principle of air refrigeration cycle, vapour absorption	n sy	vsten	n, a	nd
Thermoelectric r	refrigeration. Eco friendly refrigerants.				
	TOTAL:	45	PEF	RIOI	DS
COURSE OUT	COMES:				
At the end of th	e course, learners will be able to				
CO1: Apply the	rmodynamic concepts to different air standard cycles and solve p	roble	ems.		
CO2: Solve pro	blems in single stage and multistage air compressors				
COS: Calculate	s of IC Engines	orma	nce		
CO4: Solve prol	blems for steam nozzle and boilers				
CO5: Solve pro	blems using refrigerant table.				
TEXT BOOKS					
1. Rajput. R	R. K., "Thermal Engineering" 11 th Edition, Laxmi Publications, 20)20.			
	52				

R-2021 (CBCS)

BoS Chairman

- 2. Kothandaraman. C.P., Domkundwar. S,Domkundwar. A.V., "A course in thermal Engineering", 15th Edition, Dhanpat Rai & sons, 2016.
- 3. T.D Eastop "Applied Thermodynamics for engineering technologists" 5th Edition, Longman, 1993.

REFERENCES:

- 1. Ganesan V." Internal Combustion Engines", 3rd Edition, Tata Mc graw-Hill, 2012
- 2. Ramalingam. K.K., "Thermal Engineering", 2nd Edition, Scitech Publications (India) Pvt. Ltd., 2009.
- 3. Rudramoorthy, R, "Thermal Engineering", 3rd Edition, Tata McGraw-Hill, New Delhi,2003

BoS Chairman

21ME208	FLUID MECHANICS AND MACHINERY	L	Τ	Р	С
2111112200	(Theory with Practical Course)	3	0	2	4
COURSE OBJ	ECTIVES:				
To describe	e the properties of fluids and Pressure measurement.				
• To explain	law of conservation in flow through pipes.				
• To interpre	t the importance of dimensional analysis.				
• To relate th	ne importance of various types of flow in pumps.				
• To discuss	the importance of various types of flow in turbines.				
UNIT I FLU	UID PROPERTIES AND FLOW CHARACTERISTICS				9
Units and dimens	sions- Properties of fluids- mass density, specific weight, specific v	olu	me,	spec	ific
gravity, viscosit	ty, compressibility, vapour pressure, surface tension and ca	pilla	arity	. F	low
characteristics -	pressure measurement - application of continuity equation, energy	gy e	quat	ion	and
momentum equa	tion. Buoyancy.		•		
UNIT II FLO	OW THROUGH CIRCULAR CONDUITS				9
Hydraulic and e	energy gradient - Laminar flow through circular conduits and	circu	ılar	ann	uli-
Boundary layer of	concepts – types of boundary layer thickness – Darcy Weisbach eq	uati	on –	fric	tion
factor- Moody of	liagram- commercial pipes- minor losses – Flow through pipe	s in	ser	ies	and
parallel				105	unu
	AENSIONAL ANALVSIS				0
Need for dimens	ional analysis – methods of dimensional analysis – Similitude –tyr	nes o	of sir	nilit	, ude
- Dimensionless	narameters, application of dimensionless parameters – Model and	alvei	e su		uue
INIT IV DI	parameters- appreadon of dimensionless parameters woder and	11 y 51			0
Impact of jets -	Fuler's equation - Theory of roto-dynamic machines - variou	16 0	ffici	enci	es_
velocity compon	ents at entry and exit of the rotor, velocity triangles. Centrifugal p	10 C		vorl	ring
principle work	done by the impeller. Desiprocesting pump, working principle	սուլ) <u>5</u> – v	VUIT	ing
	uone by the imperier - Reciprocating pump- working principle.				0
Classification of	KBINES	dial	0.10		9 vod
Classification of	turbines – heads and efficiencies – velocity trangles. Axiai, la	ulai 1	and	. 1111 1	xeu
flow turbines. Pe	eiton wheel, Francis turbine and Kapian turbines- working princip	ies -	· wo	rk a	one
by water on the	runner – draft tube. Specific speed - unit quantities.				~
	TOTAL: 4	5 PI	ERI	OD	S
PRACTICAL C	COURSE			1	5
LIST OF EXP	ERIMENTS				
1. Determinatio	on of the Coefficient of discharge of given Orificemeter.				
2. Determinatio	on of the Coefficient of discharge of given Venturimeter.				
5. Calculation (of the rate of flow using Rotameter.				
4. Determination	on or inclion factor for a given set of pipes.	\mathbf{n}/\mathbf{a}	ıhm	orai	hla
5. Conduct exp	erments and drawing the characteristic curves of centritugal pum	p/ st	uum	ergi	ule
6 Conduct even	eriments and drawing the characteristic curves of reciprocating p	ımn			
7. Conduct exp	eriments and drawing the characteristic curves of Gear pump	•mp	•		
8. Conduct exp	eriments and drawing the characteristic curves of Pelton wheel.				

R-2021 (CBCS)

19

BoS Chairman

- 9. Conduct experiments and drawing the characteristics curves of Francis turbine.
- 10. Conduct experiments and drawing the characteristic curves of Kaplan turbine.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO1: Apply mathematical knowledge to predict the properties and characteristics of a fluid.
- CO2: Relate and correlate major and minor losses associated with pipe flow in piping network.
- CO3: Solve the dimensional analysis.
- CO4: Calculate the performance of pumps.
- CO5: Illustrate the performance of turbines.

TEXT BOOKS:

- 1. Bansal, R. K., "Textbook of fluid mechanics and hydraulic machine: SI units" 10th Edition, Laxmi Publication, 2018.
- 2. White, Frank M., "Fluid Mechanics" 8th Edition, McGraw-Hill, 2017.
- 3. Modi P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", 22nd Edition, Standard Book House, 2019.

REFERENCES:

- 1. Kumar K. L., "Engineering Fluid Mechanics", 8th Revised Edition, Eurasia Publishing House(p) Ltd., 2014,
- 2. Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery", 8th Edition, John Wiley & Sons, 2011.
- 3. Streeter, V. L. and Wylie E. B., "Fluid Mechanics", 9th Edition, McGraw Hill Publishing Co., 2017.

BoS Chairman

21MF209	MANUFACTURING TECHNOLOGY		Т	Р	С			
21WIE209	LABORATORY – II	0	0	4	2			
COURSE OBJ	ECTIVE							
To demonstrate various gear cutting in milling machine								
• To experiment gear cutting in hobbing and shaping machine								
To demo	onstrate various grinding operation in grinding machine							
• To calculate various cutting forces in lathe and milling using instruments								
• To use C	CNC part programming							
LIST OF EXP	ERIMENTS							
1. Spur gea	r cutting in milling machine							
2. Helical C	2. Helical Gear Cutting in milling machine							
3. Gear ger	3. Gear generation in hobbing machine							
4. Gear ger	4. Gear generation in gear shaping machine							
5. Plain Su	5. Plain Surface grinding							
6. Cylindrical grinding								
7. Tool angle grinding with tool and Cutter Grinder								
8. Measurement of cutting forces in Milling / Turning Process								
9. CNC Par	rt Programming							
	TOTAL	.: 6 0) PE	RIC)DS			
At the end of the	e course, learners will be able to							
CO1: Manipula	te gear cutting operation in milling machine.							
CO2: Manipula	te gear cutting operation in shaping and gear hobbing machine.							
CO3: Manipulate various operation in grinding machine.								
CO4: Evaluate	CO4: Evaluate various cutting forces in lathe and milling machine.							

CO5: Apply CNC part programing for given geometry.

1 BoS Chairman

21ME210	THEDMAL ENCINEEDING LADODATODY	L	Т	Р	С	
2111112210	I HERMAL ENGINEERING LABORATORY		0	4	2	
COURSE OBJECTIVES:						
To illustr	rate value timing-V diagram and performance of IC Engines.					
To demo	nstrate characteristics of fuels/Lubricates used in IC Engines.					
• To illus	trate of steam generator/ turbine.					
To demo	nstrate Load test on a single cylinder -Diesel engine.					
• To illus	trate Load test on multi-cylinder petrol engine					
LIST OF EXPI	ERIMENTS					
1. Valve Timin	g and Port Timing diagrams.					
2. Actual p-v diagrams of IC engines.						
3. Performance	3. Performance Test on 4 – stroke Diesel Engine.					
4. Heat Balance	4. Heat Balance Test on 4 – stroke Diesel Engine.					
5. Morse Test on Multi-cylinder Petrol Engine.						
6. Retardation	6. Retardation Test on a Diesel Engine.					
7. Determination of Flash Point and Fire Point of various fuels / lubricants.						
8. Study on Steam Generators and Turbines.						
9. Performance and Energy Balance Test on a Steam Generator.						
10. Performance and Energy Balance Test on Steam Turbine.						
	ΤΟΤΑΙ	.: 6 0) PE	RIC	DDS	
COURSE OUTCOME:						
At the end of the	At the end of the course, learners will be able to					

CO1: Sketch the various components and mechanisms of I. C. Engines.

- CO2: Evaluate performance characteristics of single-cylinder petrol engines at different loads.
- CO3: Demonstrate indicated power of individual cylinders of an engine by using the morse test.
- CO4: Evaluate the tests Steam Turbine.
- CO5: Evaluate the tests Steam generators.

BoS Chairman

21ME211	KINEMATICS AND DYNAMICS LABORATORY		Τ	Р	С		
2111112211			0	4	2		
COURSE OBJ	ECTIVES						
• To calcu	late the mass moment of inertia.						
 To relate 	the effect of gyroscope and governors.						
• To sketc	h the cam profile for followers.						
To demo	nstrate the vibration effect for springs under loading condition.						
To calcu	late the critical speed for shaft with concentrated loads						
LIST OF EXP	ERIMENTS						
1. Determination	on of Mass Moment of Inertia using compound pendulum/ Bif	ilar	Susp	pens	ion/		
2 Motorized g	vroscope – Study of gyroscopic effect and couple						
3. Characterist	3 Characteristics of watt / Porter / Proell/ Hartnell governor by fixing the mechanism properly						
to spindle sh	aft.		1	- °P	<u>j</u>		
4. Cams – Can	profile drawing, Motion curves and study of jump phenomenon						
5. Free vibratio	5. Free vibration of spring mass system.						
6. Longitudinal vibration of helical spring.							
7. Whirling of shafts – Determination of critical speeds of shafts with concentrated loads.							
8. Transverse vibrations of simply supported beam and Cantilever Beam.							
9. Balancing of Rotating and Reciprocating masses.							
10. Study of Damped Torsional vibration of single rotor system.							
11. Study of undamped Torsional vibration of single rotor system.							
TOTAL: 60 PERIODS							
COURSE OUT	COME:						
At the end of the	e course, learners will be able to						
CO1: Calculate mass moment of inertia.							
CO2: Interpret the effect of gyroscope and governors.							
CO3: Sketch th	e cam profile for various applications.						
CO4: Demonstr	ate the vibrations effect for spring mass system						

CO5: Calculate the critical speed for shafts under different loading system

10 **BoS** Chairman

ADVANCED READING AND WRITING	L	Т	Р	С			
LABORATORY	0	0	2	1			
COURSE OBJECTIVES:							
1. To use relevant strategies for reading critically and writing purposely.							
2. To choose relevant skills required to study engineering topics.							
3. To discriminate between general writing and technical writing.							
4. To develop students' critical thinking skills.							
5. To propose research ideas and develop their project in writing.							
UNIT I BASICS OF PARAGRAPH READING AND WRITING				6			
Reading - Strategies for effective reading - Usage of glossaries and footnotes	to	aid	read	ling			
Comprehension - Read and recognize different text types - Predicting content us	sing	g pho	otos	and			
title; Writing - Plan before writing - Synopsis Preparation - Develop a paragraph:	top	oic se	enter	nce,			
supporting sentences, concluding sentence -Write a descriptive paragraph							
UNIT II ORGANISATION OF WRITING				6			
Reading - Read for details - Use of graphic organizers to review and aid comprehe	ens	ion V	Writ	ing			
- State reasons and examples to support ideas in writing - Parallel paragraph - W1	rite	a pa	ragr	aph			
with reasons and examples - Write an opinion paragraph							
UNIT III COMPONENTS OF LONGER TEXTS				6			
Reading - Understanding pronoun reference and use of connectors in a passage - speed							
reading techniques; Writing - Hints Developing - Elements of a good essay -Types of essays –							
Descriptive, Narrative, Issue-based, Argumentative - Analytical.							
UNIT IV WRITING IN PERSONAL AND TECHNICAL CONTEXTS							
Reading - Cohesion of ideas, Organization of Ideas; Writing - Email writing - Resumes - Writing							
Job application - Formats of project proposals.							
UNIT V LANGUAGE AT WORKPLACES				6			
Reading - Critical reading and thinking - Reading and comprehending texts of dif	ffer	ent c	loma	ains			
– Identify; Writing - Statement of Purpose - Letter of recommendation							
TOTAL: 30 PERIODS							
OUTCOMES:							
At the end of the course, learners will be able to:							
CO1: Strengthen the reading skills of students of engineering.							
CO2: Enhance their writing skills with specific reference to technical writing.							
CO3: Develop students' critical thinking skills.							
CO4: Communicate well at workplaces							
CO5: Provide more opportunities to develop their project and proposal writing skills.							

Blom altry Bos Chairman

TEXT BOOKS:

- 1. E. Suresh Kumar and et al. "Enriching Speaking and Writing Skills", 2nd Edition.Orient BlackSwan: Hyderabad, 2012
- 2. Debra Daise, CharlNorloff, and Paul Carne Reading and Writing (Level 4) Oxford University Press: Oxford, 2011
- 3. Gramer F. Margot and Colin S. Ward Reading and Writing (Level 3) Oxford University Press:Oxford, 2011

REFERENCES:

- 1. Davis, Jason and Rhonda LIss. Effective Academic Writing (Level 3) Oxford University Press: Oxford, 2006
- 2. Withrow, Jeans and et al. Inspired to Write. Readings and Tasks to develop writing skills. Cambridge University Press: Cambridge, 2004
- 3. Petelin, Roslyn and Marsh Durham. The Professional Writing Guide: Knowing Well and Knowing Why. Business & Professional Publishing: Australia, 2004
- 4. Goatly, Andrew. Critical Reading and Writing. Routledge: United States of America, 2000

9. for att Bo**\$ ¢**hairman

	DESIGN OF MACHINE ELEMENTS	L	Т	Р	С			
21ME301	(Usage of PSG Design Data Book is permitted in the end	2	0	Δ	2			
	semester examinations)	3	U	U	3			
COURSE OBJ	ECTIVES:							
• To apply	the concepts of stress in design of machine elements subjected	to s	tead	y ar	ıd			
variable	loading							
• To use de	esign procedure to validate strength of shafts and couplings							
• To execu	te the design procedure for spring and connecting rod to validat	e the	e str	eng	th			
based up	on the application and requirements							
To demo	nstrate the design procedure for joints and suggest the suitable of	dime	ensio	on f	or			
various n	nechanical applications							
To choos	e the appropriate bearings based on standard procedure for specif	ic ar	oplic	catic	ons			
UNIT I STI	EADY STRESSES AND VARIABLE STRESSES				9			
Factors influenc	ing machine design, selection of materials based on mechanic	al p	rope	ertie	s -			
Preferred number	ers, fits and tolerances, Factor of safety - principle stresses fo	r va	riou	is lo	oad			
combinations, c	urved beams - Crane hook - Crane sling, Theories of failure	; -]	Desi	gn	for			
variable loading					0			
Design of solid	SIGN OF SHAFTS AND COUPLINGS	Kow			9			
and Splines - Rid	and nonlow sharts based on strength, fighting and critical speed -	Ney	s, ke	:ywa	1y8			
UNIT III FN	FRCV STORING FI FMFNTS				0			
Coil Springs: Te	ension Springs -Compression Springs - Optimization of helical	spri	ngs	- L	, eaf			
Springs – Design	n of Connecting Rods and crank shafts.	SPII		1	Jui			
UNIT IV TE	MPORARY AND PERMANENT JOINTS				9			
Threaded fasten	ers - Bolted joints including eccentric loading, Knuckle joints,	Wel	ded	joir	ıts,			
riveted joints for	structures							
UNIT V DE	SIGN AND SELECTION OF BEARINGS				9			
Sliding contact	and rolling contact bearings - Hydrodynamic journal bearings	s, S [,]	omn	nerf	eld			
Number, Raimor	ndi and Boyd graphs - Selection of Rolling Contact bearings.							
Case Studies on	Machine Elements using Software (Not for an Examination)							
TOTAL: 45 PERIODS								
COURSE OUT	COMES:							
At the end of the	course, learners will be able to							
CO1: Explin the concepts of stress in design of machine elements subjected to steady and								
variable loading.								
CO3: Execute the design procedure for spring and connecting rod to validate the strength based								
upon the application and requirements.								
CO4: Apply the design procedure for joints and suggest the suitable dimension for various								
mechanical applications								
CO5: Demonstrate the appropriate bearings based on standard procedure for specific								
applications.								
1 Joseph Edward Shiglay and Charles D. Migueles "Mashanical Engineering Design" 10 th								
Fdition	Tata McGraw Hill 2015	; De	sign	, 1	U			

6

2. Bhandari V, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.

3. Sharma and Purohit, "Design of Machine Elements", 4th Edition, PHI Learning, 2003. **REFERENCES:**

- 1. Jalaludeen S, "Machine Design, Vol -1", 4th Edition, Reprint Anuradha Publications, 2021
- M.F. Spott, "Design of Machine Elements", 8th Edition, Pearson Education, 2019
 R.B. Patel, "Design of Machine Elements", 7th Edition, MacMillan Publishers India P Ltd., Tech-Max Educational resources, 2011.
- 4. PSG, "Design Data Book", Kalaikathir Achhangham Coimbtore, 2018.

10 **BoS** Chairman

PRODUCTIVITY AND QUALITY MANAGEMENT

L	Т	Р	С
3	0	0	3

9

9

9

9

9

45

TOTAL PERIOD

COURSE OBJECTIVES:

21ME302

- To demonstrate them to know the evolution of Productivity and Quality Management.
- To use the tools productivity management.
- To apply the functions and principles of management.
- To discussion the application of the quality principles in an organization.
- To apply the tools for quality and productivity improvements.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises -

UNIT II PRODUCTIVITY MANAGEMENT

Evolution of Industrial Engineering, Productivity definition, means of increasing productivity, **Method study**: Selection of jobs, recording tools and techniques – Flow chart, Process chart, Man-machine chart, two handed process chart, Process flow diagram, Process Flow Analysis, Analyzing, and Development of improved methods. **Work Measurement**: Time study equipment, performance rating, allowances, number of cycles to be studied, and determination of standard time. Work place design - Ergonomics.

UNIT III PRINCIPLES AND CONCEPTS OF TOTAL QUALITY MANAGEMENT

Need for quality - Evolution of quality - Definitions of quality - Introduction Productivity metrics – Quality route to productivity - Dimensions of product and service quality - Basic concepts of TQM - Customer focus –Leadership -Employee involvement -Performance appraisal - Continuous process improvement -Supplier partnership TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements

UNIT IV	SUPPORTING	TOOLS, AC	CTIVITIES A	AND TECHNI	QUES IN TQM
	PROJECTS				

The seven traditional tools of quality - New management tools -, - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types. Quality Function Deployment (QFD) - Taguchi quality loss function -

UNIT V QUALITY AND PRODUCTIVITY SYSTEMS

JIT concepts and enablers - Kanban principles - evaluate inventory norm in the supply chain, Changeover time compression techniques, TPM - Concepts, improvement needs - Six sigma: Concepts, Methodology - The structure of ISO 9000 – 2015 series standards – Development of quality statement complying different classes - certification process.

Course Outcomes:

At the end of the course, learners will be able to

- CO1: Discuss the need for Productivity and Quality
- CO2: Demonstrate the various productivity tools and techniques
- CO3: Apply the various TQM principles in meeting the customer expectations from a product/service
- CO4: Demonstrate various quality management tools, techniques and systems
- CO5: Discuss the need for Implement the Productivity and Quality Management Systems in a

63

BoS Chairman

different organization environment

TEXT BOOKS

- 1. Harold Koontz & Heinz Weihrich, "Essentials of Management: An International, Innovation Harold Roomz & Hemz Wennien, "Essentials of Management. An international, innovation and Leadership Perspective", 5th edition, McGraw Hill, 2015.
 ILO, "Introduction to Work Study", 4th Edition, Universal Publishing Corporation, Bombay,
- 1992.
- 3. Dale H. Besterfiled, et at., "Total quality Management", 5th Edition, Pearson Education Asia, Indian Reprint, 2018

REFERENCES

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.
- 2. Tripathy PC & Reddy PN, "Principles of Management", 4th edition, Tata Mcgraw Hill, 1999
- 3. Panneerselvam R, "Production and Operations Management", 3rd edition, PHI, New Delhi, 2006

10 **BoS** Chairman
21ME303 FLUID POWER AUTOMATION		L	Т	P	С		
21111E303	FLUID FOWER AUTOMATION		0	0	3		
COURSE OBJI	ECTIVES:						
• To discu	ss the application of fluid power in process, construction and	man	ufac	cturi	ng		
Industries.							
• To demonstrate the working of hydraulic actuators and control components							
• To apply the hydraulic circuits and systems							
• To demonstrate the working of pneumatic and electro pneumatic systems							
• To apply	a measurable degree of competence in the design, construction ar	nd or	bera	tion	of		
fluid pow	ver circuits	1	L				
UNIT I FLU	JID POWER PRINICIPLES AND HYDRAULIC PUMPS			9	9		
Introduction to H	Fluid power – Advantages and Applications – Fluid power syste	ms -	- Ty	pes	of		
fluids - Basics o	f Hydraulics – Pascal's Law – Principles of flow – Sources of Hy	drau	ilic j	ow	er:		
Pumping Theor	y - Pump Classification - Construction, Working, Design	, A	dvar	ıtag	es,		
Disadvantages,	Performance, Selection criteria of Linear and Rotary - Fixed	and	1 Va	arial	ble		
displacement put	mps						
UNIT II HY	DRAULIC ACTUATORS AND CONTROL COMPONENTS)		
Hydraulic Actua	tors: Cylinders – Types and construction. Application. Hydrauli	c cu	shio	ning	, , _		
Hydraulic motor	s - Control Components : Direction Control. Flow control and p	ressi	ire c	cont	rol		
valves – Types.	Construction and Operation – Servo and Proportional valves –	Ann	licat	ion	s –		
Accessories : Re	servoirs. Pressure Switches – Applications – Fluid Power ANSIS	vmł	pols	.1011	5		
UNIT III HY	DRAULIC CIRCUITS AND SYSTEMS	<u>j</u> in	015		9		
Accumulators, 1	ntensifiers. Industrial hydraulic circuits – Regenerative. Pun	ıp I	Unlo	adi	ng.		
Double- Pump.	Pressure Intensifier. Air-over oil. Sequence. Reciprocation. Sy	nch	roniz	zatio	on.		
Fail-Safe, Speed	l Control, Hydrostatic transmission, Electro hydraulic circuit	s. N	/lech	nani	cal		
hydraulic servo s	systems.	,					
UNIT IV PNI	EUMATIC AND ELECTRO PNEUMATIC SYSTEMS			9	9		
Properties of air	- Perfect Gas Laws - Compressor - Filters, Regulator, Lubricato	r, M	[uff]	er, A	Air		
control Valves,	Quick Exhaust Valves, Pneumatic actuators, Design of Pneur	natio	c cii	cuit	t —		
Cascade method	l – Electro Pneumatic System – Elements – Ladder diagram	1 —	Pro	bler	ns,		
Introduction to f	luidics and pneumatic logic circuits.				, i		
UNIT V TR	OUBLE SHOOTING AND APPLICATIONS			9	9		
Installation, Sel	ection, Maintenance, Trouble Shooting and Remedies in I	Hydı	auli	c a	nd		
Pneumatic syste	ms, Design of hydraulic circuits for Drilling, Planning, Sha	ping	g, S	urfa	nce		
grinding, Press	and Forklift applications. Design of Pneumatic circuits for P	ick	and	Pla	nce		
applications and	tool handling in CNC Machine tools - Low cost Automation -	Hyc	Iraul	lic a	nd		
Pneumatic powe	r packs.						
	TOTAL:	45]	PER	IO	DS		
COURSE OUT	COMES:						
At the end of the	course, learners will be able to						
CO1: Explain th	e Fluid power and operation of different types of pumps.						
CO2: Summariz	e the teatures and functions of Hydraulic motors, actuators and Fl	ow	cont	rol			

valves

- CO3: Explain the different types of Hydraulic circuits and systems
- CO4: Explain the working of different pneumatic circuits and systems
- CO5: Summarize the various trouble shooting methods and applications of hydraulic and pneumatic systems.

TEXT BOOKS:

- 1. Anthony Esposito, "Fluid Power with Applications", 3rd edition, Pearson Education 2005.
- 2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", 2nd edition, Tata McGraw-Hill, 2001.
- 3. Shanmugasundaram.K, "Hydraulic and Pneumatic controls", 5th edition,Chand & Co, 2006.

- Anthony Lal, "Oil hydraulics in the service of industry", 4th edition, Allied publishers, 1982.
- Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", 3rd edition, Prentice Hall, 1987.
- 3. Majumdar S.R., "Pneumatic systems Principles and maintenance", 4th edition,Tata McGraw Hill, 1995

10 **BoS** Chairman

HEAT AND MASS TRANSFER L T P					Р	C
211VIE304		(Theory with Practical Course)	2	0	2	3
COURSE OB.	JEC	TIVES:				
To solv	e the	e problems on conductive Heat transfer				
To dem	onst	rate the problems on convective Heat Transfer.				
To solv	e the	e problems on radioactive Heat Transfer				
To calc	ulate	the Heat Exchanger parameters.				
To solv	e the	e problems on Mass Transfer.				
UNIT I	CO	NDUCTION				9
Basic concept Differential eq Dimensional S – Composite S	s – Juatio tead ystei	Mechanism of Heat Transfer - Fourier Law of Condu on of Heat Conduction – Cartesian and Cylindrical Coo y State Heat Conduction–Conduction through Plane Wall, C ms	iction ordin ylinc	n - lates lrical	Gen – (l sys	eral One tem
UNIT II	CON	IVECTION			(9
Free and Force	d Co	onvection - Hydrodynamic and Thermal Boundary Layer. F	ree	and	For	ced
Convection du	ring	external flow over Plates and Cylinders- Internal flow- Flow	throu	ıgh p	vipes	
UNIT III	RAI	DIATION	1			9
Black Body R	ladia	tion – Grey body radiation - Shape Factor, Planes perpendicu	ilar t	o eac	h ot	her,
Plane parallel t	o ea	TEXCHANCEDS	s			0
Types of Heat	Exc	hangers_Heat Exchanger Analysis _I MTD Method and NT	U-E	ffecti	vene	7 -224
Overall Heat T	rans	fer Coefficient–Fouling Factors- Boiling and Condensation.	U LI		vene	200
UNIT V	MAS	SS TRANSFER				9
Basic Concept	ts- 1	Diffusion Mass Transfer-Fick's Law of Diffusion-Steady	stat	e M	olec	ular
Diffusion-Cor	nvec	tive Mass Transfer–Momentum, Heat and Mass Transfer Ana	logy			
	~~~	TOTA	L: 4	5 PE	RIO	DS
PRACTICAL		URSE			1	15
LIST OF EXP	'ER	IMENTS:				
1. Thermal co	ndu	ctivity measurement of nine insulation using lagged nine anna	ratu	2		
3. Determinat	ion of	of heat transfer coefficient under natural convection from a ve	rtica	l cyl	inder	ſ.
4. Determinat	ion o	of heat transfer coefficient under forced convection from a tub	be.	5		
5. Determinat	ion o	of Thermal conductivity of composite wall.				
6. Determinat	ion of	of Thermal conductivity of insulating powder.				
7. Heat transfe 8 Determinet	er fr	om pin-fin apparatus (natural & forced convection modes)				
9. Determinat	ion o	of emissivity of a grev surface.				
10. Effectivene	ess o	f Parallel / counter flow heat exchanger.				
		ТОТА	L: 6	0 PE	RIO	DS
COURSE OU	TCO	OMES:				
At the end of th	he co	burse, learners will be able to				
COI: Demon	strat	e the problems on conductive Heat transfer				
CO2: Apply t	ne p	roblems on convective Heat Transfer.				
CO3: Solve th	he pi	oblems on radioactive Heat Transfer				
		67				
B.E. – MECHANICA	AL EN	GINEERING (I TO VIII SEMESTERS) BoS Chairman	P	-2021	L (CB	CS)

$CO4 \cdot$	Calculate	the	Heat	Exchanger	narameters
CO4.	Calculate	une	Heat	Exchanger	parameters.

CO5: Calculate the problems on Mass Transfer

# **TEXT BOOKS:**

- 1. Cengel, Y.A., "Heat Transfer-A Practical Approach", 3rd Edition, McGraw-Hill, 2002.
- 2. Sachdeva R C, "Fundamentals of Engineering Heat and Mass Transfer", 4th Edition New Age International, 2017.
- 3. Incropera, Frank P. DeWitt, David P. Bergman, Theodore L, Lavine, Adrienne S, "Fundamentals of Heat and Mass Transfer", 3rd Edition, John Wiley and Sons,2011.

- 1. Yadav R "Heat and Mass Transfer" 4th Edition, Central Publishing House-Allahabad, 1992.
- 2. Nag P.K, "Heat Transfer", 3rd Edition, Tata McGraw-Hill, New Delhi, 2011.
- 3. Kothandaraman. C.P, "Fundamentals of Heat and Mass Transfer," 4th Edition New Age International, New Delhi, (Reprint 2015).

**BoS** Chairman

METROLOGY AND MEASUREMENTS								
2111112505	(Theory with Practical Course)	2	0	2	3			
COURSE OBJ	ECTIVES:							
To demo	nstrate knowledge on various basic concepts of metrology.							
• To exam	ine Linear and Angular measurements.							
To exper	iment with advanced measuring equipment's.							
To apply	knowledge on the form measurement techniques.							
To calcul	late of power, flow and temperature measurements.							
UNIT I BAS	SICS OF METROLOGY				9			
Introduction to	Metrology – Need – Elements – Work piece, Instrumer	its	– P	'erso	ons			
Environment –	their effect on Precision and Accuracy – Errors – Errors in M	east	irem	ients	3 –			
Types – Control – Types of standards.								
UNIT II LIN	IEAR AND ANGULAR MEASUREMENTS			9	9			
Linear Measuring Instruments – Evolution – Types – Classification – Limit gauges – Angular								
measuring instru	iments - Types - Bevel protractor clinometers angle gauges, sp	pirit	leve	els s	sine			
bar– Autocollim	ator – Applications							
UNIT III AD	VANCES IN METROLOGY			9	9			
Basic concept c	f lasers Advantages of lasers - laser Interferometers - types -	– D	C ai	nd A	AC			
Lasers interferor	meter – Applications – Straightness – Alignment. Basic conce	ept o	of C	MM	- 1			
Types of CMM	- Constructional features - Probes - Accessories - Software -	App	olicat	tion	s –			
Basic concepts of	f Machine Vision System – Element – Applications.							
UNIT IV FO	RM MEASUREMENT			9	9			
Principles and M	Methods of straightness – Flatness measurement – Thread measurement	sure	men	t, g	ear			
measurement, su	rface finish measurement, Roundness measurement – Application	18.						
UNIT V ME	ASUREMENT OF POWER, FLOW AND TEMPERATURE			9	9			
Force, torque,	power - mechanical, Pneumatic, Hydraulic and Electrical	typ	e.	Fl	ow			
measurement: V	enturimeter, Orifice meter, rotameter, pitot tube – Temperature: b	oime	talli	c str	ip,			
thermocouples, e	electrical resistance thermometer							
	TOTAL:	45 P	'ER	IOD	)S			
PRACTICAL (	COURSE			15	,			
LIST OF EXPR	CRIMENTS:							
1. Calibrati	on and use of measuring instruments – Vernier caliper							
2. Calibrati	on and use of measuring instruments - Micrometer							
3. Calibrati	on and use of measuring instruments - Vernier height gauge							
4. Calibrati	on and use of measuring instruments – telescopic gauge							
5. Measurer	ment of angles using sine bar							
6. Measurer	ment of gear parameters – gear tooth vernier caliper							
7. Measurer	ment of features in a prismatic component using Coordinate Meas	urin	ıg M	ach	ine			
(CMM)			-					
8. Measurer	ment of torque and temperature							

## **COURSE OUTCOMES:**

At the end of the course, learners will be able to

- CO1 -Summarize the Metrological basis, concept of measurement errors, uncertainty in measurements
- CO2 Explain the linear and angular measuring instruments and their applications
- CO3 -Apply measurement strategies and diagnose various methods of measuring Mechanical parameters.
- CO4 -Demonstrate effective methods of various form measurements
- CO5 Calculate power, flow and temperature using measuring instruments.

## **TEXT BOOKS:**

- 1. Gupta. I.C., "Engineering Metrology", 3rd Edition Dhanpatrai Publications, 2005.
- 2. Jain R.K. "Engineering Metrology", 5th Edition, Khanna Publishers, 2018.
- 3. Manohar Mahajan, "A Textbook of Metrology", 4th edition Dhanpatrai Publications, 2021.

- 1. Alan S. Morris, "The essence of Measurement", 3rd Edition, Prentice Hall of India 1996.
- 2. Beckwith, Marangoni, Lienhard, "Mechanical Measurements", 4th Edition, Pearson Education, 2014.
- 3. Charles Reginald Shotbolt, "Metrology for Engineers", 5th Edition, Cengage Learning EMEA, 1990.

10 70

<ul> <li>COURSE OBJECTIVES:</li> <li>To apply practical knowledge regarding conceptualization, design and development of a new product</li> <li>To use the basic concepts of product design, product features and its architecture</li> <li>To use basic knowledge in the common features a product has and how to incorporate them suitably in product.</li> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development</li> </ul>								
<ul> <li>COURSE OBJECTIVES:</li> <li>To apply practical knowledge regarding conceptualization, design and development of a new product</li> <li>To use the basic concepts of product design, product features and its architecture</li> <li>To use basic knowledge in the common features a product has and how to incorporate them suitably in product.</li> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development</li> </ul>								
<ul> <li>To apply practical knowledge regarding conceptualization, design and development of a new product</li> <li>To use the basic concepts of product design, product features and its architecture</li> <li>To use basic knowledge in the common features a product has and how to incorporate them suitably in product.</li> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development</li> </ul>								
<ul> <li>new product</li> <li>To use the basic concepts of product design, product features and its architecture</li> <li>To use basic knowledge in the common features a product has and how to incorporate them suitably in product.</li> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development.</li> </ul>								
<ul> <li>To use the basic concepts of product design, product features and its architecture</li> <li>To use basic knowledge in the common features a product has and how to incorporate them suitably in product.</li> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development.</li> </ul>								
<ul> <li>To use basic knowledge in the common features a product has and how to incorporate them suitably in product.</li> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development.</li> </ul>								
<ul> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development.</li> </ul>								
<ul> <li>To discuss the purpose of inculcating basic design standards and design skills among the students.</li> <li>To apply basic features of product development.</li> </ul>								
• To apply basic features of product development								
<ul> <li>To apply basic features of product development</li> </ul>								
UNIT I INTRODUCTION 9								
Need for IPPD – Strategic importance of Product development – integration of customer								
designer material supplier and process planner. Competitor and customer – Behavior analysis								
Understanding customer need – prompting customer understanding – involve customer in								
development and managing requirements – Plan and establish product specifications.								
UNIT II     CONCEPT GENERATION AND SELECTION     9								
Task – Structured approaches – clarification – search – externally and internally – explore								
systematically – reflect on the solutions and processes – concept selection – methodology –								
benefits.								
UNIT IIIPRODUCT ARCHITECTURE9								
Implications - Product change - variety - component standardization - product performance -								
manufacturability - product development management - establishing the architecture - creation								
- clustering – geometric layout development – fundamental and incidental interactions – related								
system level design issues – secondary systems – architecture of the chunks – creating detailed								
interface specifications.								
UNIT IV INDUSTRIAL DESIGN 9								
Integrate process design – Managing costs – Robust design – Integrating CAE, CAD, CAM								
tools – Simulating product performance and manufacturing processes electronically – Need for industrial design impact design process conceptualization refinement technology								
driven products - user - driven products - assessing the quality of industrial design								
UNIT V PRODUCT DEVELOPMENT 9								
Definition – Estimation of Manufacturing cost – reducing the component costs and assembly								
costs – Minimize system complexity – Prototype basics – principles of prototyping – planning								
for prototypes –Understanding and representing tasks – baseline project planning – accelerating								
the project – project execution.								
LIST OF EXPERIMENTS: 15								
1. Introduction to Engineering Drawing standards								
2. Introduction to Geometric Dimensioning								
3. Introduction to Limits, Fits and Tolerances								
4. Preparation of production drawings and reading of part and assembly drawings								
5. CAD drawing of Plummer Block								
6. CAD drawing of couplings								

6

7. CAD drawing of screw jack
TOTAL: 60 PERIODS
COURSE OUTCOMES:
At the end of the course, learners will be able to
CO1: Demonstrate the concept of product development and its applications.
CO2: Apply concept evaluation process.
CO3: Demonstrate the suitable product architecture.
CO4: Discuss the product planning process based on the customer need.
CO5: Discuss product specification with cost, aesthetic and ergonomics aspects.
TEXT BOOKS:
1. Ulrich, Karl T and Steven D. Eppinger, "Product Design and Development", 6 th Edition
Irwin/McGraw-Hill, 2015.
2. N.Siddeshwar, P. Kanniah, V.V.S. Sastri, "Machine Drawing", 3 rd Edition, Tata McGraw
Hill, 2014.
3. Gopalakrishna K.R., "Machine Drawing", 22 nd Edition, Subhas Stores Books Corner,
Bangalore, 2013
REFERENCES:
1. David G. Ullman, "The Mechanical Design Process", 4 th edition, Tata McGraw Hill, 2011
2. Orwin, Homewood, "Effective Product Design and Development", 1st Edition, Stephen
Rosenthal, Business One, 1992.
3. Stuart Pugh, "Tool Design – Integrated Methods for successful Product Engineering", 1 st
Edition, Addison Wesley Publishing, 1991.

5 BoS Chairman

DESIGN OF TRANSMISSION SYSTEM								
21ME307	(Usage of P.S.G Design Data Book is permitted in the end	2	0	Λ	3			
	semester examinations)	5	U	U	5			
COURSE OBJ	ECTIVES:							
• To demo	onstrate the principles for designing the flexible elements in	Tra	nsm	issic	on			
systems.								
• To apply the design procedure for designing Spur and Helical gears								
• To apply	the design procedure for designing bevel and worm gears.							
To constr	ruct and calculate the multi-speed gear box.							
To illustrate the concepts for designing clutches and brakes.								
UNIT I DE	SIGN OF FLEXIBLE ELEMENTS			(	9			
Introduction on	transmission system - Design of Flat belt drive and Flat belt pull	eys	- De	esigi	n of			
V belt drive - De	esign of roller chain drive - Design of wire ropes							
UNIT II SPU	JR AND HELICAL GEARS			(	9			
Gear terminolog	y - speed ratios and number of teeth-force analysis - stresses	in g	gear	tee	th -			
dynamic effects	- fatigue strength - Gear materials - Design of straight tooth	spu	r &	hel	ical			
gears based on s	strength and wear considerations - Pressure angle in the normal	and	l tra	nsve	erse			
plane- Equivaler	nt number of teeth-forces for helical gears Crossed helical ar	nd H	Ierri	ngb	one			
gear - Cross heli	cal, Terminology-helix angles							
UNIT III BE	VEL AND WORM GEARS				9			
Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth.								
Design of pair o	f straight bevel gears. Worm Gear: Merits and demerits- termino	logy	, ma	ateri	als-			
forces and stress	es, efficiency, Design of the worm gear pair-Heat generation in w	orm	gea	ır dr	ive			
UNIT IV DE	SIGN OF GEAR BOXES			(	9			
Gear Box – met	hods for obtaining different spindle speeds - Requirements of a	a spo	eed	redu	ıcer			
gear box – pref	Ferred numbers - Standard step ratio - Rules for optimum gea	r bo	ox d	lesig	gn -			
Preparation of ra	y diagram and kinematic arrangement – Design of multi-speed ge	earbo	ЭX					
UNIT V CL	UTCHES AND BRAKES				9			
Clutches - Func	tion of clutch - Classification - Friction materials - Design S	ingl	e pl	ate	and			
Multi plate clute	ches - axial clutch - internal expanding rim clutches. Brakes -	Clas	ssifi	catio	on -			
Design of Single	e Block, Double Blake brake – Design of Band and Block Brake	e - I	nter	nal	and			
external expandi	ng shoe brakes.							
	TOTAL:	45	PEF	RIO	DS			
COURSE OUT	COMES:							
At the end of the	course, learners will be able to							
COI: Apply prin	nciples and procedure for the design of flexible Transmission eler	nent	s.					
CO2: Interpret t	CO2: Interpret the standard procedure for the design Spur and Helical Gears.							
CO3: Interpret the standard procedure for the design Bevel and Worm Gears.								
CO4: Demonstra	ate procedure for designing a gear box							
CO5: Illustrate t	he concepts for designing clutches and brakes.							
	73							

### **TEXT BOOKS:**

- 1. Bhandari V.B, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Education, New Delhi, 2017.
- 2. Richard G.Budynas and J.Keith Nisbett., "Shigley's Mechanical Engineering Design", 10th Edition (SIE), Tata McGraw-Hill Education, New Delhi, 2017.
- 3. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum"s Outline), 2010

# **REFERENCES:**

- 1. Sundararajamoorthy T.V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2018
- 2. R.S.Khurmi, "A text book of Machine Design", S.Chand & Co, New Delhi, 1st Edition 2015.
- 3. PSG College of Technology, "Design Data Book of Engineers", Kalaikathir Achchagam, 2018.

10

FINITE ELEMENT ANALYSIS							
2111112500	(Theory with Practical Course)	3	0	2	4		
COURSE OBJ	ECTIVES:						
To demo	nstrate the concepts of Mathematical Modeling of Engineering pro	oble	ms.				
• To exam	ine the One Dimensional structural and thermal elements.						
• To appra	ise structural and thermal elements using Two Dimensional scalar	· var	iable	e			
equations	3						
• To appraise planar stresses using Two Dimensional Vector variable equations							
• To examine the Isoparametric elements for its displacement							
UNIT I INT	RODUCTION			9	)		
Historical Backs	round – Mathematical Modeling of field problems in Engineerin	σ_	Gov	erni	nσ		
Equations – W	eighted Residual Methods – Variational Formulation of Bo	5 und	arv	Val	ue		
Problems–Ritz T	echnique – Basic concepts of the Finite Element Method.		ur j				
UNIT IL ONE DIMENSIONAL PROBLEMS							
One Dimension	al Second Order Equations – Discretization – Element types	– I	inea	r ar	, nd		
Higher order Ele	ments–Derivation of Shape functions and Stiffness matrices and	forc	e ve	ctor	s-		
Assembly of Ma	trices-Solution of problems from solid mechanics and heat transfe	er.					
UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS							
Second Order 2D Equations involving Scalar Variable Functions – Variational formulation							
Finite Element f	ormulation – Triangular elements – Shape functions and element	t ma	trice	es ar	ıd		
vectors. Applica	tion to Field Problems – Thermal problems						
UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS							
Equations of ela	sticity – Plane stress, plane strain and axisymmetric problems -	- Bo	ody f	orc	es		
and temperature	effects – Stress calculations - Plate and shell elements.						
UNII V ISU	PARAMETRIC FORMULATION	)	ond	;   ;	,		
dimensions – Se	rendinity elements–Numerical integration and Gaussian quadratu	re	anc	1 10	/0		
	TOTAL • 4	5 PI	RI		2		
PRACTICAL (	COURSE			15	,		
LIST OF EXPR	CRIMENTS:						
1 Force and	Stress analysis using link elements in Trusses, cables etc.						
2 Stress an	d deflection analysis in beams with different support conditions						
3 Stress an	alvsis of flat plates						
4. Stress an	alysis of axisymmetric components						
5. Thermal	stress and heat transfer analysis of plates.						
6 Thermal stress and heat transfer analysis of composite plates							
7. Modal analysis of Beams							
8. Harmoni	c and transient analysis of simple beams						
	TOTAL:	60 ]	PER		DS		
COURSE OUT	COMES:						
At the end of the	course, learners will be able to						
	75						

CO1:	Illustrate the	e Enginee	ering probl	lems using th	ne concept	of Engineer	ing Model
		<u> </u>		<u> </u>		<u> </u>	0

- CO2: Solve the One Dimensional structural and thermal elements.
- CO3: Solve the Two Dimensional scalar variable equations structural and thermal elements
- CO4: Solve planar stresses using Two Dimensional Vector variable equations

CO5: Demonstrate Isoparametric element, shape function and Gaussian quadrature.

### **TEXT BOOKS:**

- Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005
- 2. Seshu, P, "Text Book of Finite Element Analysis", 1st Edition, Prentice-Hall of India Pvt. Ltd. New Delhi, 2007.
- 3. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004

### **REFERENCES:**

- 1. Logan, D.L., "A first course in Finite Element Method", 1st Edition, Thomson Asia Pvt. Ltd., 2002
- 2. Robert. D. Cook, David. S. Malkus, Michael. E. Plesha, Robert. J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.
- 3. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div,1990
- 4. Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications",1st Edition, John Wiley & Sons, 2005(Indian Reprint 2013)

	MECHATRONICS and IoT	L	Т	Р	С			
21ME309	(Theory with Practical Course)	2	0	2	<u>ר</u>			
COUDSE OD I		4	U		5			
	ectives:		~~~~					
• To apply kno	owiedge about the elements and techniques involved in Mechatror	ncs	sysu	em.				
• To demonstr	ate the architecture and operation of typical microprocessors and							
microcontrollers.								
• To understan	• To understand the concepts of Internet of Things and able to build IoT applications							
• To apply knowledge gained about generic architecture of PLCs and its real-life industrial applications								
<ul> <li>To evaluate and select suitable actuators, sensors and controllers</li> </ul>								
	ECHATRONICS SENSORS AND TRANSDUCER				0			
UNIT MECHATRONICS, SENSORS AND TRANSDUCER 9								
Mechatronics –	Classification of Mechatronics Sensors and Transducers: Static	and	s ar 1 Dx	cas man	nic			
Characteristics	$\Delta f$ Sensor Potentiometers $-IVDT - Capacitance sensors - Since \Delta f$	train	ະມງ ເດຍ	inan				
Eddy current	sensor – Hall effect sensor – Temperature sensor	orsi	'Bin	uges ietal	, Ilic			
Strips RTD Three	emistor) – Light sensors (Photo diade photo transistor Photo re	sist	er) <b>-(</b>	Ictui	cal			
Encoder	mistor) Light sensors (Frioto diode, prioto d'unisistor, Frioto re	5150		opu	Cui			
UNIT II MI	CROPROCESSOR AND MICROCONTROLLER				9			
Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes –Instruction set–								
Block diagram o	f 8051 Microcontroller-Microprocessor vs. Microcontroller-Timi	ng D	Diag	ram				
UNIT III IOT	AND PROGRAMMABLE PERIPHERAL INTERFACE	0		9	9			
Introduction to	Internet of Things, Characteristics of IoT, Physical design of Io	ъT,	Fun	ction	nal			
blocks of IoT –	Architecture of 8255- Pin Configuration- Interfacing Keyboard,	LEI	) di	spla	у-			
Traffic light Con	trol interface.							
UNIT IV PRO	OGRAMMABLE LOGIC CONTROLLER			ļ	9			
Introduction – B	asic structure -Architecture of PLC- Input and output processing	– Lo	ogic					
Gates- Mnemon	ics – Timers, counters and internal relays – Data handling – Selec	tion	of I	PLC				
UNIT V AC'	TUATORS AND MECHATRONIC SYSTEM DESIGN			9	9			
Stepper and Serv	vo motors – Construction – Working Principle – Advantages and I	Disa	dva	ntag	es.			
Design process-s	stages of design process – Traditional and Mechatronics design co	nce	pts –	- Ca	se			
Studies of Mecha	atronics systems – Pick and place Robot – Automatic car park bar	rier.		1				
LIST OF EXPE	CRIMENTS:			1	5			
1. Experime	ent with the various types of transducers.							
2. Assembly	y language programming of 8085 – Addition – Subtraction							
3. Stepper r	notor interface.							
4. Design and develop traffic management system.								
5. Speed co	ntrol of DC motor.							
6. Experime	ent on hydraulic, pneumatic and electro-pneumatic circuits.							

6 BoS Chairman

- 7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using Software.
- 8. Experiment on PLC and its applications.
- 9. Experiment the image processing technique.

### **TOTAL: 60 PERIODS**

#### **COURSE OUTCOMES:**

At the end of the course, learners will be able to

- CO1: Select various Sensors and Transducers in Mechatronics systems
- CO2: Demonstrate 8085 Microprocessors and 8051 Micro controller.
- CO3: Operate the fundamentals of IOT and Programmable Peripheral Interface.
- CO4: Interpret programmable logic controller
- CO5: Demonstrate various actuators and appraise mechatronics systems

#### **TEXT BOOKS:**

- 1. W.Bolton, "Mechatronics", 4th Edition, Prentice Hall, 2008.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice Hall, 2008.
- 3. A. McEwen and H. Cassimally, "Designing the Internet of Things", 1st Edition, Wiley, 2013.

- 1. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", 4th Edition, PWS publishing company, 2007.
- 2. Krishna Kant, "Microprocessors & Microcontrollers", 3rd Edition, Prentice Hall of India, 2013
- 3. Michael B.Histand and Davis G.Alciatore, "Introduction to Mechatronics and Measurement systems", 4th Edition, McGraw Hill International edition, 2012.

B.E. - MECHANICAL ENGINEERING (I TO VIII SEMESTERS)

**BoS Chairman** 

# DESIGN THINKING AND PROTOTYPE DEVELOPMENT

L	Т	Р	С
0	0	4	2

### **COURSE OBJECTIVES:**

21ME310

- To apply the foundational knowledge to get hands on training in the fabrication of one or more components.
- To illustrate the various parts of the product.
- To relate the various operation and material selected for the product.
- To interpret the cost analysis of the product.
- To demonstrate the complete working model.

# **GUIDELINE FOR REVIEW AND EVALUATION**

The students may be grouped into 2 to 4 and work under a project supervisor.

The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry.

A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department.

At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

## **TOTAL: 45 PERIODS**

COURSE OUTCOMES:

At the end of the course, learners will be able to

- CO1: Apply the fundamental concepts of design the product.
- CO2: Demonstrate the various parts of the product.
- CO3: Relate various operation and material selected for the product.
- CO4: Interpret the cost analysis of the product.
- CO5: Show the applications of the complete working model.

PROFESSIONAL COMMUNICATION     L     T     P							
21EN301		0	0	2	1		
COUPSEO	(Common to all B.E./B.Tech. Programmes)						
• To de	monstrate communication skills that can lead to improved inte	rners	sonal				
relati	onshine	-pen	onui				
• 10 pl	an to set and achieve goals with focus.						
• To organize themselves in work life to face the professional set up with confidence.							
• To interpret ideas and participate in group discussion with positive attitude.							
• To de	evelop their confidence and help learners to attend interviews s	ucces	ssfully	/.			
UNIT I	COMMUNICATION AND PROFESSIONAL ETIQUET	ГES			6		
Importance	and Types of Communication Verbal communication -Pres	entat	ion s	kills	- Non-		
Verbal com	munication - Personal Appearance, Posture, Gestures, Fac	ial E	Expres	sion	is, Eye		
Contact and	Space Distancing - Professional Etiquette						
	GOAL SETTING AND MUTIVATION				0		
Short term a	nd Long term Goals- Strategies to set and achieve goals- Motiv	atior	1				
UNIT III	TIME AND STRESS MANAGEMENT	aina	Strong		0 polycia		
of the Case S	of Time - Time Management Skins - Sources of Stress - Mana	ging	Suess	5 - A	marysis		
	CROUP DISCUSSIONS AND POSITIVE ATTITUDE				6		
Group Discu	ssions - Leadership Qualities - Decision Making - Problem S	Solvi	ng _ ]	Neg	otiation		
Skills - Posit	ive Attitude	50171	115	105	Juliulion		
UNIT V	<b>RESUME MAKING AND INTERVIEW SKILLS</b>				6		
Preparing R	esume - E - Resume - Covering Letter - Job Application th	roug	h ema	ail -	Career		
Portfolio - T	ypes of Interviews - Mock Interviews						
	ТОТ	AL:	<b>30 P</b>	ERI	ODS		
COURSE O	UTCOMES:						
At the end of	the course, learners will be able to:						
COI: Demo	nstrate effective communication skills through presentations.						
CO2: Utilize	e their knowledge of motivation in setting and achieving goals.						
CO3: Exam	ine time and stress management.						
CO4: Formu	alate their ideas into an effective communication in formal cont	texts.					
CO5: Devel	op a well-composed resume and face interviews confidently.						
TEXTBOO	KS:						
1. Dhan 2012	avel S P, "English and Soft Skills", 1 st Edition, Orient BlackS	Swan	Ltd,	Hyd	erabad,		
2. Dr. 7	Cobin Porterfield & Bob Graham, "The 55 Soft Skills That nizational Success." Mason – West Publishing House 2018	Guid	e Em	ploy	vee and		
<ol> <li>3. Prashant Sharma, "Soft Skills Personality Development for Life Success, "BPB Publicationa Navy Dalbi, January 2018</li> </ol>							
REFEREN	<b>*FS</b> •						
	- 67.1						
	80 Offernaling						

- 1. M. Ashraf Rizvi, "Effective Technical Communication," Tata McGraw Hill Education Pvt. Ltd. New Delhi, 2016.
- 2. Mohan Krishna & Meera Banerji, "Developing Communication Skills," 1st Edition, Trinity Press, 2017.
- 3. N. Krishnaswami & T. Sriraman, "Creative English for Communication", 3rd Edition, Laxmi Publications Private Limited, 2017.

Stomathy BoS Chairman

# 21ME401

# **PROJECT WORK 1**

L	Т	Р	С
0	0	4	2

### **COURSE OBJECTIVES:**

- To develop knowledge to formulate a real-world problem.
- To apply the goal and evolve procedures
- To use different tools and techniques to arrive at a solution
- To relate the results analytically and experimentally
- To prepare a report and give a presentation

Student shall identify a minor problem related to the field of Mechanical Engineering and carry out a literature survey/case studies/data collection. Student is supposed to formulate Engineering solutions to the problem, methodology to test their hypothesis/solutions and validate it theoretically/practically, planned and executed within the stipulated time.

Observations, results and inference should be documented and presented as report in the prescribed format.

### **TOTAL: 60 PERIODS**

**COURSE OUTCOMES:** 

At the end of the course, learners will be able to

- CO1: Identify an engineering problem using scientific tools
- CO2: Analyse physical systems to address an engineering problem
- CO3: Formulate objectives and timelines for executing a project
- CO4: Apply multidisciplinary knowledge to develop sustainable solutions
- CO5: Report solutions and their outcomes through documentation

# 21ME402

# **PROJECT WORK II**

L	Т	Р	С
0	0	20	10

### **COURSE OBJECTIVES:**

- To use the knowledge to formulate a real-world problem.
- To demonstrate the goal and evolve procedures
- To use different tools and techniques to arrive at a solution
- To choose the results analytically and experimentally
- To prepare a report and give a presentation

Student shall identify a major/critical problem related to the field of Mechanical Engineering and carry out a literature survey/case studies/data collection. Student supposed to formulate Engineering solutions to set objectives, methodology to test their hypothesis/solutions and validate it theoretically/practically, planned and executed within the stipulated time.

Observations, results and inferences should be documented and presented as report in the prescribed format.

#### **TOTAL: 300 PERIODS**

**COURSE OUTCOMES:** 

At the end of the course, learners will be able to

- CO1: Identify an engineering problem using scientific tools
- CO2: Analyse physical systems to address an engineering problem
- CO3: Formulate objectives and timelines for executing a project
- CO4: Apply multidisciplinary knowledge to develop sustainable solutions
- CO5: Report solutions and their outcomes through documentation

10 **BoS Chairman** 

# VERTICAL 1: PRODUCT AND PROCESS DEVELOPMENT

21PMF01	DESIGN CONCEPTS IN ENGINEERING	L	Т	P	С	
211 WILUI	DESIGN CONCELTS IN ENGINEERING	3	0	0	3	
COURSE OBJ	COURSE OBJECTIVES:					
To interplace	• To interpret the concepts of design process.					
To expla	in the design ability of reliable products to satisfy the customer	nee	eds.			
• To apply	the appropriate design techniques.					
To illust	rate the process of material selection principles and design.					
• To apply	the concepts used in design for reliability.					
UNIT I DE	SIGN PROCESS				9	
Importance of a	lesign - The Design Process - Morphology of Design - Design	gn I	Drav	ving	gs -	
Computer Aide	d Engineering - Designing of Standards - Concurrent Engineer	ering	g - F	Prod	luct	
Life Cycle - Teo	chnological Forecasting - Market Identification - Competition B	enc	hma	rkir	ıg.	
UNIT II DE	SIGN FOR CUSTOMER NEEDS				9	
Identification of	f customer needs - customer requirements - Quality Function	De	ploy	me	nt -	
Product Design	Specifications - Human Factors in Design - Ergonomics, A	lestl	netic	s	and	
Societal conside	eration – Product liability – Patenting intellectual property – Le	gal	and	eth	ical	
domains – Cod	es of ethics - Ethical conflicts - Design for ecological - fu	uture	e tre	ends	in	
interaction of er	gineering with society.					
UNIT III DE	SIGN TECHNIQUES				9	
Creativity and I	Problem Solving - Creativity methods-Theory of Inventive Pr	oble	em S	Solv	ing	
(TRIZ) – Conc	eptual decomposition - Generating design concepts - Axion	natic	De	esig	n –	
Evaluation met	hods-Embodiment Design - Product Architecture - Configura	atio	n D	esig	n -	
Parametric Des	ign - Role of models in design - Mathematical Modelling -	- Si	mula	atio	n –	
Geometric Mod	elling					
UNIT IV MA	TERIAL SELECTION PROCESSING IN DESIGN				9	
Material Selecti	on Process - Economics - Cost Vs Performance - Weighted Pr	ope	rty	Inde	X -	
Value Analysis	- Role of Processing in Design - Classification of Manufactu	iring	g Pr	oces	SS -	
Design for Mar	nufacture - Design for Assembly - Residual Stresses - Fatigue	, Fr	actu	ire	and	
Failure.						
UNIT V PR	OBABILITY CONCEPTS IN DESIGN FOR RELIABILIT	Y			9	
Probability – I	Distributions - Test of Hypothesis - Design of Experiments	<b>;</b> –	Rel	iabi	lity	
Theory – Design	n for Reliability – Robust Design – Failure Mode and Effect An	alys	sis			
	TOTAL:	45	PEI	RIO	DS	
COURSE OUT	COMES:					
At the end of the	e course, learners will be able to					
CO1: Explain t	he principles of CAE/concurrent engineering/forecasting techr	niqu	es f	or r	iew	
product d	esign and development					

84

- CO2: Describe the appropriate design strategies complying with established standards in devising systems for customer needs
- CO3: Use the various design techniques through modelling/simulation and optimize design
- CO4: Apply the appropriate material selection strategy for various design concepts.
- CO5: Demonstrate the various design and analysis tools for improving the quality and reliability of products performance.

## **TEXT BOOKS:**

- 1. Dieter, George E., Engineering Design "A Materials and Processing Approach", 3rd Edition, McGraw Hill International Editions, Singapore, 2000.
- 2. Karl T. Ulrich and Steven D. Eppinger "Product Design and Development" 4th Edition, McGraw Hill Edition 2009.
- 3. Kevin Otto, and Kristin Wood, "Product Design Techniques in Reverse Engineering and New Product Development", 1st Edition Pearson Education, 2000

- Pahl, G, and Beitz, W.," Engineering Design A systematic approach", 3rd Edition, English Springer 2007.
- 2. Suh, N.P., "The principles of Design", 1st Edition, Oxford University Press, NY. 1990.
- 3. Orwin, Homewood, "Effective Product Design and Development", 1st Edition, Stephen Rosenthal, Business One, 1992.

21PME0	2	PRODUCT LIFECYCLE MANAGEMENT	L 3	Т 0	Р 0	C 3
COURSE OBJECTIVES:				I		
• To i	nterp	ret the importance of product life cycle management.				
• To i	llustr	ate the functions of product life cycle management.				
<ul> <li>Το ι</li> </ul>	ise P	LM software for various module in development of product.				
• To <b>c</b>	lemo	nstrate product life cycle concepts in industrial applications.				
• To i	nterp	ret PLM customization with CAD, SLM and ERP.				
UNIT I	INT	<b>TRODUCTION TO PRODUCT LIFECYCLE MANAGEME</b>	NT		9	9
Introduction	n to	PLM, Need for PLM, opportunities of PLM, Different vie	ws	of	PLN	1 -
Engineering	g Dat	a Management, Product Data Management, Collaborative Pro	duct	De	finit	ion
Managemen	nt, Co	ollaborative Product Commerce.				
UNIT II	FUI MA	NCTIONS AND FEATURES OF PRODUCT DATA NAGEMENT			ç	•
User Functions - Data Vault and Document Management, Workflow and Process Managem						ent,
Product Str	uctu	re Management, Product Classification and Programme Mana	gem	ent.	Uti	lity
Functions -	- Coi	nmunication and Notification, data transport, data translation,	imag	ge se	ervio	ces,
system adm	inist	ration and application integration.				
UNIT III	DE	TAILS OF MODULES IN APDM/PLM SOFTWARE			ļ	)
Collaborativ	ve Pr	oduct Development, Mapping Requirements to specifications. P	art I	Num	beri	ng,
Engineering	g Va	ulting, Product reuse, Engineering Change Management, Bill of	of M	later	ial a	and
Process Con	nsiste	ncy. Digital Mock up and Prototype development. Virtual testing	and	l col	later	al.
UNIT IV	RO	LE OF PLM IN INDUSTRIES			Ģ	)
PLM select	tion	and implementation - PLM visioning, PLM strategy, PLM fe	asib	ility	stu	ldy,
change mar ten step app	nager proacl	nent for PLM, financial justification of PLM, barriers to PLM i h to PLM, benefits of PLM	mple	eme	ntati	on,
UNIT V	BAS SO	SICS ON CUSTOMISATION/INTEGRATION OF PDM/PLI FTWARE	M		ç	•
PLM Custo	miza	tion, use of EAI technology (Middleware), Integration with leg	gacy	dat	a ba	ase,
CAD, SLM	and	ERP.				
		TOTAL:	45 ]	PER	lOI	DS
COURSE	OUT	COMES:				
At the end of	of the	course, learners will be able to				
CO1: Con	nplete	the history, concepts and terminology of PLM				
CO2. mus $CO3$ . Disc	COVE	the different modules offered in commercial PLM/PDM tools				
CO4: Den	nonst	rate the PLM/PDM approaches for industrial applications.				
CO5: App	ly th	e integration of PLM/PDM with legacy data base & ERP systems				
		······································	_			_

### **TEXT BOOKS:**

- 1. Antti Saaksvuori and Anselmi Immonen, "Product Lifecycle Management", 3rd Edition, Springer Publisher, 2008.
- 2. John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", 2nd Edition, Springer Publisher, 2011.
- 3. Michael Grieves, "Product Life Cycle Management", 2nd edition, Tata McGraw Hill, 2006.

- Ivica Crnkovic, Ulf Asklund and Annita Persson Dahlqvist, "Implementing and Integrating Product Data Management and Software Configuration Management", 1st Edition, Artech House Publishers, 2003.
- 2. John Stark, "Global Product: Strategy, Product Lifecycle Management and the Billion Customer Question", 1st Edition, Springer Publisher, 2007.
- 3. ArieKarniel and Yoram Reich, Managing the Dynamics of New Product Development Processes: A New Product Lifecycle Management Paradigm, 1st Edition, Springer, 2011.

21PME03	COMPUTER INTEGRATED MANUFACTURING	L	Τ	P	С		
		3	0	0	3		
COURSE OBJ	ECTIVES:						
To demo	nstrate the basic concepts of CAD /CAM/CIM.						
• To use th	e computers and software for preparing the process plan.						
• To apply	the group technology and cellular manufacturing concepts.						
• To apply	the concepts of FMS and AGV Systems.						
To demo	nstrate the basics of Industrial Robotics.						
UNIT I INT	RODUCTION				9		
Brief introducti	on to CAD and CAM - Manufacturing Planning, Manufacturing Planning Plan	cturi	ing	Con	trol-		
Introduction to	CAD/CAM –CIM concepts – Computerized elements of CIM sy	sten	n – '	Тур	es of		
production - N	Aanufacturing models and Metrics – Mathematical models	of	Pr	odu	ction		
Performance – S	imple problems – Manufacturing Control – Simple Problems – B	asic	Ele	men	ts of		
an Automated sy	vstem – Levels of Automation						
UNIT II PRO	<b>INIT II</b> PRODUCTION PLANNING AND CONTROL AND						
COULT CO	MPUTERISED PROCESS PLANNING				,		
Process planning	g - Computer Aided Process Planning (CAPP) - Logical steps in	Cor	nput	er A	ided		
Process Planning	g – Aggregate Production Planning and the Master Production Sch	nedu	le –	Mat	erial		
Requirement pla	nning – Capacity Planning- Control Systems-Shop Floor Control-	- Au	tom	ated	data		
collection - bar	codes, optical character recognition, vision or image processing,	rad	io fi	requ	ency		
identification, m	hagnetic identification - Brief on Manufacturing Reso	urce	e Pla	annı	ng-II		
(MRP-II)					0		
	LLULAR MANUFACTURING	1	n	1 1	9 ·		
Group Technolo	by (G1), Part Families – Parts Classification and coding – Sim		Pro	blen	1s in		
Opitz Part Codil	ing system – Production flow Analysis – Cellular Manufacturing -	- CC	ompo :		part		
Monufacturing	Pank Order Clustering Method Arranging Machines in a G	s чт о	III all		luiar		
Mathad Simpl	- Rank Older Clustering Method - Allanging Machines III a O		en -	- П(	Jillei		
	EVIDIENS.						
UNIT IV AU	TOMATED GUIDED VEHICLE SYSTEM (AGVS)				9		
Types of Flexib	ility - FMS – FMS Components – FMS Application & Benefits	– F	MS	Plan	ning		
and Control – Q	Quantitative analysis in FMS – Simple Problems. Auto	oma	ted	Gu	ided		
Vehicle System	(AGVS) – AGVS Application – Vehicle Guidance techno	ology	у —	Ve	hicle		
Management &	Safety.						
UNIT V INI	DUSTRIAL ROBOTICS				9		
Robot Anatomy	and Related Attributes - Classification of Robots- Robot Control	ol sy	vsten	ns –	End		
Effectors - Set	nsors in Robotics – Robot Accuracy and Repeatability - 1	Indu	stria	ul R	obot		
Applications – R	Cobot Part Programming – Robot Accuracy and Repeatability						

6

**COURSE OUTCOMES:** 

At the end of the course, learners will be able to

CO1: Describe the basis of Computer Integrated Manufacturing

CO2: Apply the fundamentals of process and production planning

CO3: Explain cellular manufacturing and group technology concepts

CO4: Explain the concepts of FMS and AGV Systems

CO5: Describe the working of Industrial Robotics in manufacturing systems

## TEXT BOOKS:

- 1. Mikell.P. Groover "Automation, Production Systems and Computer Integrated manufacturing", 4th Edition, Pearson education ltd, 2016.
- 2. Radhakrishnan P, Subramanyan S. and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2018.
- 3. James A. Rehg, H. W. Kraebber, "Computer Integrated Manufacturing", 3rd Edition, Pearson, 2004.

- Gideon Halevi and Roland Weill, "Principles of Process Planning A Logical Approach" 1st Edition, Chapman & Hall, London, 1995.
- 2. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", 1st Edition, Prentice Hall India 1998.
- 3. Rao. P, N Tewari &T.K. Kundra, "Computer Aided Manufacturing", 2nd Edition, Tata McGraw Hill Publishing Company, 2017.

21DME04	A DDITINE MANUEA CTUDINC	L	Т	P	С		
21PME04	ADDITIVE MANUFACTURING	2	0	2	3		
COURSE OBJECTIVES:							
• To illustrate the potential of additive manufacturing in different industrial sectors.							
To demo	nstrate the need, advantages and limitations of additive manufactu	ring	g (Al	M)			
To demo	nstrate the processes used in additive manufacturing for a range	of	mat	eria	ls		
and appli	cations						
To const	ruct the role of additive manufacturing in the design process and	its	abil	ity	to		
support I	Design and manufacturing						
To relate	the challenges associated with AM and its data-processing tools						
UNIT I INT	<b>TRODUCTION TO ADDITIVE MANUFACTURING</b>			9	9		
Introduction to A	AM, AM evolution, Distinction between AM & CNC machining	, Sto	eps i	in A	м,		
Classification of	f AM processes, Applications, Advantages of AM and Types of	f m	ater	ials	for		
AM. Impact of A	AM on Product Development - Virtual Prototyping - Rapid Tooling	g – ]	RP t	o A	M.		
UNIT II RE	VERSE ENGINEERING AND CAD MODELLING			9	9		
Basic concept-	Digitization techniques – Model reconstruction – Data Process	sing	for	Ra	ıpid		
Prototyping: CA	D model preparation, Data requirements & formats, Part orientati	on a	and s	supp	port		
generation, Supp	oort structure design, Model Slicing, Tool path generation-Softwar	e fo	r Al	М.			
UNIT III LIQ	UID & SOLID-BASED ADDITIVE MANUFACTURING STEMS			9	9		
Working Princi	ples, details of processes, products, materials, advantages, l	imit	atio	ns	and		
applications - S	stereo lithography Apparatus - Solid Ground Curing - Fu	sed	dep	osit	ion		
Modelling - Lam	ninated Object Manufacturing.						
UNIT IV PO	WDER-BASED ADDITIVE MANUFACTURING SYSTEMS			9	9		
Selective Laser S	Sintering: Principle, process, Indirect and direct SLS- powder strue	ctur	es,				
Materials, post-p	processing, surface deviation and accuracy, Applications. Laser En	gine	eere	d No	et		
Shaping: Process	ses, materials, products, advantages, limitations and applications						
UNIT V OT	HER ADDITIVE MANUFACTURING SYSTEMS			9	9		
Three-dimensior	nal Printing (3DP): Principle, basic process, types of pri	ntin	g, ]	proc	ess		
capabilities, ma	terial system. Solid-based, Liquid-based and powder-based	3D]	P s	yste	ms,		
strength and wea	kness, Applications and case studies. Shape Deposition Manufact	urir	ng, E	Balli	stic		
Particle Manufac	Particle Manufacturing and Selective Laser Melting.						
	TOTAL:	45 ]	PER	IO	DS		
COURSE OUT	COMES:						
At the end of the	course, learners will be able to						
CO1: Demonst	rate additive manufacturing and its role in product development						
CO2: Apply the	e CAE processes in additive manufacturing	_					
CO3: Apply the	e various liquid and solid-based additive manufacturing technique	S					

CO4:	Illustrate the different	powder-based additive	manufacturing techniques
		1	0 1

CO5: Summarize other additive manufacturing techniques

## **TEXT BOOKS:**

- 1. Chua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and applications", 2nd Edition, World Scientific Publishers, 2010.
- 2. Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing", 1st Edition, Springer, 2010.
- 3. Amit Bandyopadhyay Susmita Bose, "Additive Manufacturing", 2nd Edition, CRC Press, Taylor & Francis Group, 2020

- 1. Gebhardt, A., "Rapid prototyping", 1st Edition, Hanser Gardener Publications, 2003.
- 2. Hilton, P.D. and Jacobs, P.F., "Rapid Tooling: Technologies and Industrial Applications", 1st Edition, CRC press, 2005.
- 3. Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", 1st Edition, Springer, 2006.

21PME05	COMPOSITE MATERIALS IN PRODUCT DEVELOPMENT	L 3	Т 0	P 0	C 3
COURSE OBJ	ECTIVES:				
To Demo	onstrate the knowledge of composite materials and its types				
To Illustr	rate the difference between matrix and reinforcements				
To Summ	narize the fabrication techniques for polymer matrix composites				
To Summ	narize the fabrication techniques for metal matrix composites				
To Recog	gnize the importance of novel composite materials in product deve	elop	men	t	
UNIT I INT	TRODUCTION TO COMPOSITES			9	9
Introduction: De	efinition, Classification of Composite materials based on struc	ture	, ba	sed	on
matrix, Advanta	ages of composites, Applications of composites, Functional re-	equi	rem	ents	of
reinforcement ar	nd matrix.				
UNIT II RE	INFORCEMENTS AND INTERACTIONS			ļ	9
Types of reinfor	cements and their properties: Fibers: Carbon, Boron, Glass, Aram	id, A	A120	D3, S	SiC
- Role of interfac	ces: Wettability and Bonding, interface in Composites, Interaction	ns ar	nd T	ype	s of
bonding at the Ir	terface, Tests for measuring Interfacial strength.				
UNIT III PO	LYMER MATRIX COMPOSITES			9	9
Fabrication of I	Polymeric Matrix Composites, hand layup processes – spray w	nb t	oroc	esse	s –
compression mo	oulding – reinforced reaction injection moulding – resin transf	er i	nou	ldin	g –
Pultrusion – Fila	ment winding – Injection moulding. Laminated Composites				
UNIT IV ME	TAL MATRIX COMPOSITES			9	9
Fabrication of M	Ietal Matrix Composites: powder metallurgy process – diffusion	boı	ndin	g –	stir
casting – squeez	e casting, spray process, Liquid infiltration In-situ reactions				
UNIT V CO	MPOSITES IN PRODUCT DEVELOPMENT			9	9
Properties of Co	omposites - Mechanical Properties, Density, Elastic constants -	App	licat	tions	s of
composites in v	various domains - applications of PMC and MMC in aerospa	ce,	auto	omot	tive
industries – Con	nposites in Additive Manufacturing				
	TOTAL:	45 ]	PER	RIO	DS
COURSE OUT	COMES:				
At the end of the	e course, learners will be able to				
COI: Develop	understanding of composite materials and its types				
CO2: Compren	nd fundamentals and processing of polymor matrix composition				
CO3: Understa	nd fundamentals and processing of poryliner matrix composites				
$CO_{7}$ : Identify (	the significance of composite materials in product development				
TEXT BOOKS	•				
1. It Meng Low	· y, Yu Dong, "Composite Materials - Manufacturing, Properties and	d			
Applications	", 1 st edition, Elsevier, 2021.				

6

- 2. K. Srinivasan "Composite Material: Production Properties Testing", 5th edition, Narosa, 2020.
- 3. Mallick, P.K. and Newman, S., "Composite Materials Technology: Processes and Properties", 4th edition, Hansen Publisher, Munish, 1990

- 1. Issac M. Daniel and Ori Ishai, "Engineering Mechanics of Composite Materials", 3rd edition, Oxford University Press, 2006.
- 2. Mallick, P.K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 4th edition, Maneel Dekker Inc, 1993.
- 3. Halpin, J.C., "Primer on Composite Materials, Analysis", 3rd edition, Technomic Publishing Co., 1984.

		L	Т	P	С	
21PME06	ERGONOMICS IN DESIGN	3	0	0	3	
<b>COURSE OBJE</b>	CTIVES:					
• To demonstrate the various concepts of ergonomics in the design of man – machine						
system.						
• To use the	basic knowledge in the application of ergonomic principles to design	n of	ind	ustri	al	
workplaces	S.	,				
To demons	strate the scope of occupational ergonomics.					
To demons	strate the environmental factor in design					
• To explain	the core concepts of ergonomics to evaluate and redesign the products					
UNIT I INT	RODUCTION			9	9	
Concepts of human	n factors engineering and ergonomics – Man – machine system and de	esigr	n phi	loso	phy	
– Physical work – I	Heat stress – manual lifting – work posture – repetitive motion.	•	-			
UNIT II ANT	HROPOMETRY			ļ	9	
Physical dimension	ns of the human body as a working machine - Motion size relationsl	nips	– St	atic	and	
dynamic anthropor	netry - Anthropometric aids - Design principles - Using anthropome	tric 1	neas	ures	for	
industrial design -	Procedure for anthropometric design.					
UNIT III DES	IGN OF SYSTEMS			9	9	
Displays – Contro	ls - Workplace - Seating - Work process - Duration and rest period	ods ·	– Ha	and	tool	
design – Design of	visual displays – Design for shift work.					
UNIT IV ENV	IRONMENTAL FACTORS IN DESIGN			ļ	9	
Temperature – Hur	midity – Noise – Illumination – Vibration – Measurement of illumination	on ar	nd co	ontra	st –	
use of photometer	s - Recommended illumination levels. The ageing eye - Use of in-	direc	t (re	flec	ted)	
lighting – cost effi	ciency of illumination – special purpose lighting for inspection and	quali	ity co	ontro	ol –	
Measurement of so	ound – Noise exposure and hearing loss – Hearing protectors – analys	sis a	nd re	educi	tion	
of noise – Effects of	of Noise on performance					
UNIT V WOI	RK PHYSIOLOGY			ļ	9	
Provision of energ	y for muscular work - Role of oxygen physical exertion - Measur	emei	nt of	ene	ergy	
expenditure Respir	ration - Pulse rate and blood pressure during physical work - Physic	al w	ork (	capa	city	
and its evaluation.						
	TOTAL:	45 ]	PER	IO	DS	
COURSE OUTO	COMES:					
At the end of the	course, learners will be able to					
COI: Apply the	various concepts of human factors engineering					
CO2: Demonstr	ate the anthropometry principles and measures.					
CO3: Sketch the	e tasks and workstations to fit employees.					
CO4: Demonstra	te the design consideration of the surroundings					
CO5: Interpret	the concepts of work physiology.					
<b>TEXT BOOKS:</b>						

6

- 1. Kroemer, K.H.E., "Fitting the Human: Introduction to Ergonomics", 7th Edition, CRC Press, 2017.
- 2. Martin Helander, "A guide to the ergonomics of manufacturing", 4th Edition, East West press, 2007.
- 3. Freivalds, A., "Neibel's Methods, Standards and Work Design", 13th Edition, McGraw Hill.2013

- 1. Bridger, R.S. "Introduction to Ergonomics", 1st Edition, McGraw Hill, 1995.
- 2. Micormic, J. "Human factors in Engineering and Design", 2nd Edition, McGraw Hill, 1992.
- 3. Wilson, J.R. Corlect EN, "Evaluation of Human work", A. practical Ergonomcis methodology, 1st Edition, Taylor and Francis, 1990.
- 4. Shackel, B.Richardson S, "Human Factors for Information usability", Cambridge University, 1st Edition, Cambridge University Press, 1991.

# 21PME07 DESIGN FOR MANUFACTURING AND ASSEMBLY

L	Т	Р	С
3	0	0	r

9

9

9

9

## **COURSE OBJECTIVES:**

- To demonstrate the design principle for economical production.
- To explain the importance of form design in manufacture.
- To illustrate various machining parameter for assembly.
- To demonstrate the casting concepts for DFMA
- To interpret the knowledge of compliance analysis on assembly and environment design

## UNIT I INTRODUCTION

General design principles for manufacturability: strength and mechanical factors, mechanisms selection, evaluation method, Process capability: Feature tolerances, Geometric tolerances, Assembly limits, Datum features, and Tolerance stacks.

## UNIT II FACTORS INFLUENCING FORM DESIGN

Working principle, Material, Manufacture, Design- Possible solutions, Materials choice,Influence of materials on form design, form design of Welded members, forgings and castingsUNIT IIICOMPONENT DESIGN-I9

Machining Consideration: Design features to facilitate machining: drills, milling cutters, keyways, Doweling procedures, counter sunk screws, Reduction of machined area, simplification by separation, simplification by amalgamation, Design for machinability, Design for economy, Design for clampability, Design for accessibility, Design for assembly

## UNIT IV COMPONENT DESIGN-II

Casting Consideration: Redesign of castings based on parting line considerations, Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design, Modifying the design, group technology, Computer Applications for DFMA

# UNIT V DESIGN FOR THE ENVIRONMENT

Introduction, Environmental objectives, Global issues, Regional and local issues, Basic DFE methods, Design guide lines, Example application, Lifecycle assessment, Basic method, Environmentally responsible product assessment, Weighted sum assessment method, Lifecycle assessment method, Techniques to reduce environmental impact, Design to minimize material usage, Design for disassembly, Design for recyclability, Design for remanufacture, Design for energy efficiency, Design to regulations and standards

96

# **TOTAL: 45 PERIODS**

# **COURSE OUTCOMES:**

At the end of the course, learners will be able to

- CO1: Explain the appropriate design for economical production.
- CO2: Demonstrate the factors influencing form design.

- CO3: Interpret various machining operation for economical production and assembly.
- CO4: Use the casting concepts to design component for DFMA.
- CO5: Use the compliance analysis for design of assembly and environment.

## **TEXT BOOKS:**

- 1. Geoffry Boothroyd, Peter Dewhurst and W. A. Knight, "Product design for manufacture and assembly", 3rd Edition, CRC Press,
- George E Deiter, "Engineering Design", 4th Edition, McGraw-Hill International, 2002.
   Kevin Otto and Kristin Wood, "Production Design", 5th edition, Person Education,

- 1. A. K. Chitale and R.C. Gupt "Product design and Manufacturing", 3rd Edition, prentice-Hall of India, New Delhi, 2003
- 2. Surender Kumar, Goutham Sutradhar, "Design and Manufacturing", 3rd Edition, Oxford & IBH Publishing co, Pvt Ltd, 1998.
- 3. Graedel T. Allen B, "Design for the Environment", 5th Edition, Angle Wood Cliff, Prentice Hall. Reason Pub.1996

# VERTICAL 2: DIGITAL AND GREEN MANUFACTURING

		I.	Т	Р	С	
21PME08	NON-TRADITIONAL MACHINING PROCESSES	3	0	0	3	
COURSE O	BJECTIVES:		v	v	-	
• To relate the need for unconventional machining processes and its classification						
• To ex	plain various thermal energy and electrical energy based unconvention	onal				
mach	ning processes	JIIUI				
To cla	ssify various chemical and electro-chemical energy based non-tradit	ione	ıl			
mach	ning processes					
• To ch	pose various nano abrasives based unconventional machining proces	ses				
To sh	ow various recent trends based unconventional machining processes					
UNIT I	NTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES				9	
Unconventio	nal machining Process – Need – classification – merits, demerits and	app	lica	tion	s.	
Abrasive Jet	Machining – Water Jet Machining – Abrasive Water Jet Machining -	Ult	raso	nic		
Machining. (	AJM, WJM, AWJM and USM). Working Principles – equipment	use	d –	Pro	cess	
parameters –	MRR- Applications.					
UNIT II '	THERMAL AND ELECTRICAL ENERGY BASED PROCESS	ES			9	
Electric Disc	narge Machining (EDM) – Wire cut EDM – Working Principle-equip	pme	nt-P	roce	ess	
Parameters-S	urface Finish and MRR- electrode / Tool – Power and control Circui	ts-T	ool	Wea	ır –	
Dielectric – l	Flushing — Applications. Laser Beam machining and drilling, (LBM	A), j	olası	na,	Arc	
machining (I	AM) and Electron Beam Machining (EBM). Principles - Equip	men	t –]	Гурє	es –	
Beam control	techniques – Applications.					
	CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES				9	
Chemical ma	chining and Electro-Chemical machining (CHM and ECM)- Etchan	nts -	- Ma	aska	nt -	
techniques of	applying maskants - Process Parameters - Surface finish and MRR-	Apr	olica	tion	s.	
Principles o	f ECM- equipment-Surface Roughness and MRR Electrical	circ	cuit-	Pro	cess	
Parameters-E	CG and ECH - Applications.					
UNIT IV	ADVANCED NANO FINISHING PROCESSES				9	
Abrasive flow	machining, chemo-mechanical polishing, magnetic abrasive finishi	ng, I	mag	netc	,	
rheological f	inishing, magneto rheological abrasive flow finishing their worl	cing	pri	ncip	les,	
equipment, e	fect of process parameters, applications, advantages and limitations.					
UNIT V	RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES				9	
Recent deve	lopments in non-traditional machining processes, their work	ing	pri	ncir	oles,	
equipment, e	fect of process parameters, applications, advantages and limitations.	Co	mpa	riso	n of	
non-tradition	al machining processes.					
	TOTAL:	45	PEF	NO	DS	
COURSE O	UTCOMES:					
At the end of	the course, learners will be able to					
COI: Expla	in the mechanical energy based processes and its classification.					

0 BoS Chairman

- CO2: Identify the various thermal energy and electrical energy based processes.
- CO3: Demonstrate the various chemical and electro-chemical energy based processes.
- CO4: Choose various advanced nano finishing processes.
- CO5: Identify the recent trends in non-traditional machining processes.

# **TEXT BOOKS:**

- Vijay. K. Jain "Advanced Machining Processes" 2nd Edition, Allied Publishers Pvt. Ltd., New Delhi, 2007
- 2. Pandey P.C. and Shan H.S. "Modern Machining Processes" 3rd Edition, Tata McGraw-Hill, New Delhi, 2007.
- 3. Paul De Garmo, J.T.Black, and Ronald. A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt. Ltd., 8th Edition, New Delhi, 2001.

- 1. Benedict. G.F. "Nontraditional Manufacturing Processes", 1st Edition, Marcel Dekker Inc., New York, 1987.
- 2. Mc Geough, "Advanced Methods of Machining", 2nd Edition, Chapman and Hall, London, 1998.
- 3. M. K. Singh, "Unconventional Machining processes", New Age International Publishers, 1st Edition, 2010.

**BoS Chairman** 

21PME09	CASTING AND WELDING PROCESSES	L	T	P	C
		3	0	0	3
COURSE OBJI					
• To illustr	ate the quality test methods conducted on welded and cast compo	nent	S.		
• To demo	nstrate the metallurgical aspects during the solidification of metal	and	allo	oys.	
• To relate	the challenges associated with various casting and moulding	pro	cess	ses	in
manufact	uring.				
• To expla	in the behaviour of materials during welding, and the effect	ct of	f pr	oce	SS
paramete	rs in welding				
To demo	nstrate the various joining process used in manufacturing.				
UNIT I INT	<b>TRODUCTION TO FOUNDRY CASTING</b>				9
Introduction: De	finition, Classification of manufacturing processes. Metals cast i	n th	e fo	und	ry -
classification, fa	actors that determine the selection of a casting alloy. Patter	ms:	Def	init	ion,
classification, m	aterials for pattern, pattern allowances. Sand moulding: Types	of	bas	e sa	ınd,
requirements. B	inder, Additives definition, need and types; preparation of	sar	nd r	nou	lds.
Moulding machi	nes- Jolt type, squeeze type and Sand slinger. Types of moulding	proc	cess,	Co	res:
Definition, need	, types. Method of making cores, Concept of gating and risers,	Fu	nctio	ons	and
types.					
UNIT II ME	LTING & METAL MOLD CASTING METHODS				9
Melting furnaces	s: Classification of furnaces, Gas fired pit furnace, Resistance fu	rnac	e, C	ore	less
induction furnac	e, electric arc furnace, constructional features & working prine	ciple	e of	cup	ola
furnace. Casting	g using metal moulds: Gravity die casting, pressure die casti	ng,	cen	trifu	ıgal
casting, squeeze	casting, slush casting, thixocasting, and continuous casting process	sses			
UNIT III SO	LIDIFICATION & NON-FERROUS FOUNDRY CASTING				9
Solidification: D	efinition, nucleation, solidification variables. Directional solidific	catio	n-ne	eed	and
methods. Degas	ification in liquid metals-sources of gas, degasification method	ls. F	ettli	ng	and
cleaning of casti	ngs: Basic steps involved. Sand Casting defects- causes, features a	and	rem	edie	s.
Advantages & li	mitations of casting process. Nonferrous foundry casting: Alumi	niur	n ca	stin	gs -
advantages, limi	tations, melting of Aluminium using lift-out crucible furnace. H	Iard	ener	s u	sed,
drowsing, gas at	osorption, fluxing and flushing, grain refining, pouring temperatu	ire.	Stir	cas	ting
set-up, procedure	e, uses, advantages and limitations.				
UNIT IV WE	LDING PROCESSES				9
Welding process	:: Definition, Principles, classification, application, advantages &	e lir	nitat	ion	s of
welding. Arc we	elding: Principle, Metal arc welding (MAW), Flux Shielded Meta	al A	rc V	Velc	ing
(FSMAW), Iner	t Gas Welding (TIG & MIG) Submerged Arc Welding (SAV	V) a	nd	Ato	mic
Hydrogen Weld	ing (AHW). Special types of welding: Resistance welding pr	inci	ples	, Se	am
welding, Butt v	velding, Spot welding and Projection welding. Friction weld	ing,	Ex	plos	sive
welding, Thermi	t welding, Laser welding and Electron beam welding.				
UNIT V ME	TALLURGICAL ASPECTS IN WELDING, SOLDERING, A	ND	)		9
Structure of well	ds, Formation of different zones during welding. Heat Affected	d Zo	one	HA	Z).
			-	、 <u> </u>	/7

6 BoS Chairman
Parameters affecting HAZ. Effect of carbon content on structure and properties of steel, Shrinkage in welds& Residual stresses. Concept of electrodes, filler rod and fluxes. Welding defects- detection, causes & remedy. Soldering, brazing, gas welding: Soldering, Brazing, Gas Welding: Principle, oxy-Acetylene welding, oxyhydrogen welding, air-acetylene welding, Gas cutting, powder cutting.

### **TOTAL: 45 PERIODS**

**COURSE OUTCOMES:** At the end of the course, learners will be able to

- CO1: Apply casting process with knowledge of foundry and moulding machines.
- CO2: Illustrate the various casting furnaces and different mould casting methods.
- CO3: Describe the Solidification process and Casting of Non-Ferrous Metals.
- CO4: Explain the different welding processes used in manufacturing
- CO5: Illustrate the metallurgical aspects in welding, soldering and brazing process

### **TEXT BOOKS:**

- 1. Anup Goel, "Metal Casting and Welding: Processes and Applications", Technical Publications, 1st edition, 2020
- 2. Richard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal, "Principles of metal casting", Tata McGraw Hill Education Private Limited, 1st edition, 1976
- 3. Serope Kalpakjian, Steuen. R Sechmid, "Manufacturing Technology", 5th Edition, Pearson Education Asia, 2006

- 1. Dr. K. Radhakrishna, "Manufacturing Process-I", Sapna Book House, 5th Revised Edition 2009.
- 2. P.N.Rao, "Manufacturing Technology Foundry, Forming and Welding", 3rd Edition, Tata McGraw Hill, 2003.
- 3. Roy A Lindberg, "Process and Materials of Manufacturing", 4th Edition, Pearson Edu. 2006
- 4. G.S. Sawhney, "Manufacturing Science", Vol I: Forming, Casting, Welding, 1st edition, Wiley, 2019

## 21PME10

### NON DESTRUCTIVE TESTING

L T P C 3 0 0 3

9

9

9

9

#### **COURSE OBJECTIVES:**

- To illustrate the overview of Non Destructive testing methods.
- To demonstrate the various surface NDE methods.
- To Use thermography and eddy current testing for NDE.
- To Use ultrasonic testing and acoustic emission concepts in NDE.
- To apply radiography testing method for evaluation.

### UNIT I OVERVIEW OF NDT

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided

UNIT II SURFACE NDE METHODS

Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

#### UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING (ET)

Thermography- Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

#### UNIT IV ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique – Principle, AE parameters, Applications

UNIT V RADIOGRAPHY (RT)

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films - graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

### TOTAL: 45 PERIODS

#### **COURSE OUTCOMES:**

At the end of the course, learners will be able to

CO1: Illustrate the fundamental concepts of NDT

CO2: Demonstrate the different methods of NDE

CO3: Use the concept of Thermography and Eddy current testing

10

CO4:	Demonstrate	the concept	of Ultrasonic	Testing	and Ac	coustic 1	Emission
CO5:	Illustrate the	concept of R	adiography				

### **TEXT BOOKS:**

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", 1st Edition, Narosa Publishing House, , 2014.
- 2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised Edition, New Age International Publishers, 2010
- 3. Paul E Mix, "Introduction to Non-destructive testing: a training guide", 2nd Edition, Wiley, New Jersey, 2005

- 1. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 2. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing.
- 3. Charles, J. Hellier, "Handbook of Nondestructive evaluation", 1st Edition, McGraw Hill, New York 2001.

**BoS Chairman** 

21PME11	SURFACE ENGINEERING	L	T	P	<u>С</u>
		3	0	0	3
	ectives: riment with failure micro mechanisms occurring for diff	aron	t co	rvic	
condition	is	JICH	1 50	I VIC	<i>i</i> C
• To illus	strate the micro mechanism failure to optimize surface	e ei	ngine	ere	ed
microstru	ictures.		-8		
To illustr	ate appropriate testing approaches to evaluate service performanc	e.			
• To exper	iment with real life surface failure problems and determine the c	orre	ct su	rfac	ce
engineeri	ng solution by applying contact mechanics.				
To relate	complex data and propose appropriate engineering solutions				
UNIT I FU	NDAMENTALS OF SURFACE ENGINEERING			7	7
Introduction: Er	igineering components, surface dependent properties and failur	es,	impo	orta	nce
and scope of sur	face engineering; Surface and surface energy: Structure and type	es of	inte	rfac	ces,
surface energy a	and related equations; Surface engineering: classification, defini	tion,	sco	pe a	and
general principle	28				
UNIT II CO	NVENTIONAL SURFACE ENGINEERING PRACTICES			1	2
Solid material re	emoval: Cleaning, pickling, etching, grinding, polishing, buffing	/ pui	ffing	; So	olid
material additio	n: Electrodeposition / plating, Aluminizing, calorizing, diffus	iona	l co	atin	igs;
Surface modifi	cation using liquid/molten bath: Cyaniding, liquid carbur	izing	g; S	Surf	ace
modification usi	ng gaseous medium: Nitriding carbonitriding				
UNIT III AD	VANCED SURFACE ENGINEERING PRACTICES		4	1	2
Surface enginee	demonstration, profile. Logar assisted microstructural modification	pies,	, typ	es a	and
intensity/energy	deposition profile; Laser assisted incrostructural modification	lon,	lon	De	am
tashniquasi Elan	tructure and compositional modification; Surface engineer	ing	by	sp	ray
Soutton deposition	is spray and HVOF. Surface coatings and surface modifications		apor D	anc	)11 -
Sputter deposition	A DA CTEDIZATION OF COATINGS AND SUDFACES		ט. ו	_	7
Measurement of	Coatings thickness: porosity & adhesion of surface coatings: N	/eas	urem	)ent	t of
residual stress &	stability: Surface microscopy & topography by scapning pro	he n	nicro	sco	nv.
Spectroscopic ar	alvsis of modified surfaces	<i>J</i> <b>U</b> II	nero	500	ру,
UNIT V FUI	NCTIONAL COATINGS AND APPLICATIONS			-	7
Functional and	nano-structured coatings and their applications in photovol	aics	, bio	)- 3	and
chemical sensor	s; Surface passivation of semiconductors & effect on electr	ical	prop	bert	ies;
Surface enginee	ring of polymers and composites; Thin film technology for	mu	ltilay	vers	&
superlattices for	electronic, optical and magnetic devices; Modelling.		Ū		
	TOTAL:	45 J	PER	IO	DS
<b>COURSE OUT</b>	COMES:				
At the end of the	course, learners will be able to				
CO1: Illustrate t	ne rundamental surface engineering techniques.				
CO2: Demonstra	ate the conventional surface engineered structures.				

6

CO3: Relate the advanced practices in surface engineering.

CO4: Experiment with characterization of coatings and surfaces.

CO5: Demonstrate the functional coatings and applications.

### **TEXT BOOKS:**

- 1. Devis, J.R., "Surface Engineering for Corrosion & Wear Resistance", 1st Edition, CRC Press, 2001
- 2. M. Ohring, "The Materials Science of Thin Films", 2nd Edition, Academic Press Inc, 2001.
- 3. Peter Martin, "Introduction to Surface Engineering and Functionally Engineered Materials", 1st Edition, John Willey, 2011

- 1. K.G. Budinski, "Surface Engineering a Wear Resistances", 1st Edition, Prentice Hall, Englewood Cliffs, 1988.
- 2. M.G. Fontana, "Corrosion Engineering (classification of Corrosion)", Mc. Graw Hill, 1st Edition, 1987.
- 3. John O. Milewski, "Additive Manufacturing of Metals", Springer, 2017.

19 **BoS Chairman** 

21PMF12	INDUSTRIAL AUTOMATION SYSYTEMS		Т	Р	С
211 101212		3	0	0	3
COURSE OBJI	ECTIVES:				
To illustr	ate the basics of automation and its basic concepts				
• To use th	e concepts of group technology				
• To apply	the concepts of flexible manufacturing system				
• To explai	in the Industrial Robotics and Mechatronics System				
To demo	nstrate the knowledge of automated machinery and economy				
UNIT I INT	TRODUCTION			9	)
Automation and	types, Automated Manufacturing System, Reasons for Autom	ating	g, th	e U	SA
Principle, Strate	gies for automation and process improvement, automation migra	atior	str	ateg	ies,
levels of automa	tions, Types of Automations.			1	
UNIT II GR	OUP TECHNOLOGY			9	)
Part family, Par	t classification and coding, production flow analysis – OPIT	Z cl	assi	ficat	ion
system, cellular	manufacturing, quantitative analysis in cellular manufacturin	g. F	Rank	Or	der
Clustering Tech	nique (ROC), Holier Method –I, II, Single Linkage Cluster Anal	ysis	Tec	chnie	que
(SLCA). Applica	ation of group technology			-	
UNIT III FLI	EXIBLE MANUFACTURING SYSTEM			9	)
Types of flexibil	lity, types of FMS, FMS components, FMS Components-Workst	atio	ns, N	/late	rial
Handling and St	orage Systems, Computer Control System, Human Recourses, FM	IS A	ppli	cati	ons
and Benefits., Q	Quantitative analysis of FMS, Sizing the FMS, System perform	nanc	e m	leasi	ure.
Automated Mat	erial Handling & Storage: Functions, Types, Analysis of ma	teria	al h	andl	ing
equipment, Desi	ign of Conveyor & AGV systems. Problems. Development for	r to	al r	nate	rial
handling system.					
UNIT IV INI	DUSTRIAL ROBOTICS AND MECHATRONICS SYSTEM			9	)
Introduction, Ro	obot Anatomy and Related Attributes, Robot Control Systems,	Enc	l Ef	fecto	ors,
Sensors in Robo	tics, Industrial Robot Applications, Robot Programming overview	<i>w</i> . T	rans	duc	ers,
Sensors and A	ctuators: Classification, Principle of Operation, Selection G	Crite	ria,	Sig	nal
Conditioning, Ca	alibration				
UNIT V AU'	TOMATED MACHINERY AND AUTOMATED ECONOMY	Z		Ģ	)
Introductions, A	utomated transfer machine, automated transfer line, auto-storage	ge ai	nd r	etrie	eval
system, automat	ed guided vehicles, automated material handling system, autom	ated	ins	pect	ion
system and CMN	И.				
Plant Economy,	, feasibility of automation on economical sense, effect of	auto	mat	ion	on
economy, feasib	ility of automation in Indian market, Scope of automation in In	dian	ind	ustr	ies,
Break Even poin	t analysis for automation				
	TOTAL:	45	PER	loi	DS
<b>COURSE OUT</b>	COMES:				
At the end of the	course, learners will be able to				
CO1: Use the a	pplication of automated systems integration using CIM				
CO2: Apply the	e automation by applying Group Technology concepts.				
CO3: Demonst	rate the concepts of FMS in automation.				

6

BoS Chairman

CO4: Apply the working of different sensors and actuator and find application for industrial automation

CO5: Show the scope of Automation in Industries

### **TEXT BOOKS:**

- 1. Automation, Production Systems and Computer Integrated Manufacturing by Mikell P. Groover, 3rd Edition, P.H.I. 2015.
- 2. Frank Lamb, "Industrial Automation", 1st Edition, Mc Graw Hill, 2013.
- 3. Tien-Chien Chang, Richard A. Wysk and Hsu-Pin Wang, "Computer Aided Manufacturing", 1st Edition, Pearson 2011.

- 1. Er. A. K. Gupta and S. K. Arora, "Industrial Automation and Robotics", University Science Press, 1st Edition ,Laxmi Publishing Pvt. Ltd, 2011.
- 2. R. K. Mittal and I. J. Nagrath, "Robotics and Control", 1st Edition, McGraw Hill Education (India) Private Limited, 2015.
- 3. Ronald L Krutz, "Industrial Automation and Control System Security Principles", 2nd Edition, International Society of Automation, 2012.

# 21PME13

## **GREEN SUPPLY CHAIN MANAGEMENT**

9

9

9

9

9

#### **COURSE OBJECTIVES:**

- To apply the foundational knowledge associated with the green supply chain.
- To illustrate the implication of today's most pressing environmental issues.
- To relate the various green supply chain practices can actually save money, increases efficiency and reduce delivery time.
- To interpret the Closed-loop Supply Chain in green manufacturing.
- To demonstrate the practices in Green Logistics and Transportation.

### UNIT I INTRODUCTION

Introduction – Traditional Supply Chain and Green Supply Chain – Environmental Concern and Supply Chain – Closed-loop Supply Chain – Corporate Environmental Management – Green Supply Chain (GSCM): Definition, Basic Concepts – GSCM Practices.

### UNIT II ECO-DESIGN

Design for the Environment (DFE) or Eco-Design – Eco-Design and Supplier Relationships – Definitions of Eco-Design – Tools of Product Eco-Design – Involving suppliers in product ecodesign: Drivers, Challenges and Successful factors.

### UNIT III GREEN PURCHASING

Green Procurement and Purchasing – Definitions of green purchasing – Drivers of green purchasing – Green purchasing strategies – Green purchasing performance measurement –Green Supplier Development and Collaboration.

### UNIT IV GREEN MANUFACTURING

Green Manufacturing or Production: Evolution, Definitions – 4Re's: recycling, remanufacturing, reuse and reduction – Closed-loop Manufacturing – Life Cycle Analysis (LCA) – Lean Manufacturing for Green Manufacturing or Production.

# UNIT V GREEN LOGISTICS AND TRANSPORTATION

Green Logistics and Transportation – Definitions of Green Logistics – Critical drivers of Green Logistics – Green transportation and logistics practices – Environmental impacts of transportation and logistics – Closing the Loop:

### **TOTAL: 45 PERIODS**

### **COURSE OUTCOMES:**

At the end of the course, learners will be able to

CO1: Apply the fundamental concepts of Green Supply Chain.

CO2: Demonstrate the Eco design

CO3: Relate Green Procurement and Purchasing

CO4: Interpret Closed-loop Supply Chain.

CO5: Show the applications of Green Logistics and Transportation

#### **TEXT BOOKS:**

 Joseph Sarkis, Yijie Dou, "Green Supply Chain Management: A Concise Introduction", 1st Edition, Routledge, 2017

108

2. Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis, Dimitris Folinas, "Green Supply

Chain Management", 1st Edition, Routledge, 2018.

3. D. Simchi-Levi, P. Kaminsky, E. Simchi-Levi, and Ravi Shankar, "Designing and Managing the Supply Chain concepts, Strategies and Case studies", 3rd Edition, Tata McGraw Hill, New Delhi 2017.

- 1. Hsiao-Fan Wang, Surendra M. Gupta, "Green Supply Chain Management: Product Life Cycle Approach", 1st Edition, McGraw Hill publishing, 2011
- 2. Stuart Emmett, Vivek Sood, "Green Supply Chains: An Action Manifes by Stuart Emmett", 1st Edition, Wiley publications, 2010
- 3. Alan Harrison and Remko van Hoek, "Logistics Management and Strategy", 5th Edition, Pearson, 2014.

19 **BoS** Chairman

210DU01	Modern Materials Characterization Technique	es L	Т	P	С			
210PH01	(Common to all B.E. / B.Tech. Programmes)	3	0	0	3			
COURSE OB.	IECTIVES:							
• To e	• To establish a sound grasp of knowledge on analyzing crystal structure							
• To <u>p</u>	• To prepare the students to understand the basics of thermal analysis.							
<ul> <li>Το ι</li> </ul>	inderstand the concept of various electron microscop	pes.						
• To a	liscuss students with different spectroscopic techniq	ues.						
• To i	nterpret knowledge on electrical characterization of	materials.						
UNIT I	X-RAY DIFFRACTION			9				
Elastic and ine	lastic scattering - Bragg's law - basic powder diff	fraction - g	eneration	of X-ra	ays -			
characteristic X	K ray spectrum - Moseley's law - methods to ren	nove Kb ra	diation –	detect	ors -			
factors affecting	g the intensity of diffraction peaks - phase identifica	tion using X	KRD.					
UNIT II	THERMAL ANALYSIS			9				
Introduction – '	Thermo gravimetric analysis (TGA) – Instrumentati	on – determ	ination of	weight	loss			
and decomposi	tion products – differential thermal analysis (DTA	) – cooling	curves -	differe	ntial			
scanning calor	rimetry (DSC) – Instrumentation – specific l	neat capaci	ty measu	uremen	ts –			
determination of	f thermo mechanical parameters.							
UNIT III	ELECTRON MICROSCOPY			9				
Scanning electron	ron microscope (SEM) – field emission scanning	electron mi	croscope	(FESE	- (N			
Energy dispers	ive X-ray analysis (EDAX) – high resolution tr	ransmission	electron	micros	cope			
(HRTEM): wo	orking, principle and instrumentation – sample	preparation	n – scan	ning p	robe			
microscopy – a	tomic force microscopy: principle, working and inst	rumentation	•	-				
UNIT IV	SPECTROSCOPY			9				
Principles and	instrumentation for UV-Vis-IR, FTIR spectroscop	y, Raman s	pectrosco	py, elec	ctron			
spin resonance	(ESR) – nuclear magnetic resonance (NMR), ele	ctron spect	roscopy f	or chen	nical			
analysis (ESMA	A) -proton induced X-ray emission spectroscopy (PI	XE).						
	ELECTRICAL CHARACTERIZATION	1 1		9				
Two probe and	tour probe methods – Vander Pauw method – Hall	probe and m	easureme	nt –				
scattering mech	anism - C-V, $I-V$ characteristics – Schottky barrier	capacitance	– impurit	ty				
concentration –	electrochemical C-v profiling- limitations.	Т	TAT . 45		ODC			
COUDSE OU	ECOMES.	10	71 AL: 45	PERI	305			
At the end of th	ICOMES:							
At the end of the	aband the V rev diffraction to identify the phase pro-	cont in the a	nalvzad a	rustal				
con compr	enend the A-ray diffraction to identify the phase pre	sent in the a	ilalyzeu c	i ystai				
CO2. Unders	tand the importance of thermal analysis							
CO2. Unders	s the knowledge in scanning electron microscope an	d transmiss	ion electro	าท				
microsc	one	a nansiiiiss		511				
CO4· Demon	strate a strong foundational knowledge in spectroso	onv						
CO5: Unders	and the importance of electrical characterization	~~						
TEXT BOOK	S:							

Jeninous

BoS Chairman

- 1. Elton N. Kaufmann, "Characterization of Materials", Volume 1 & 2, Willey –Interscience, 2003.
- 2. E. Newbury, Patrick Echlin& Joseph Goldstein, "Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists (English)", Springer 2011.
- 3. R.F. Egerton, "Physical Principles of Electron Microscopy-An Introduction to TEM, SEM and AEM", Second edition, Springer, 2016.
- 4. Colin. N. Banwell, Elaine M. Cash, "Fundamentals of Molecular Spectroscopy", 4th Edition, Tata McGraw Hill, Indian Edition, 2017.

- **1.** B.D. Cullity, "Elements of X-ray Diffraction", Addison-Wesley Publishing Company, Inc., 2013.
- 2. B.L. Sharma, R. K. Purohit, "Semiconductor Heterojunctions", Pergamon, 2014.
- 3. Bert Voigtlander, "Atomic Force Microscopy", 2nd Edition, Springer, 2019.
- 4. Joseph. I. Goldstein, Dale E. Newbury, Joseph R. Micheal, Nicholas W. M. Rictchie, John Henry J. Scott, David C. joy, Budhika G. Mendis, "Scanning Electron Microscopy and X-ray Microanalysis", Willey, 2018.

BoS Chairman

## VERTICAL 3: CLEAN AND GREEN ENERGY TECHNOLOGIES

21PME14	RENEWABLE ENERGY TECHNOLOGIES	L 3	Т 0	P 0	C 3		
COURSE OBJ	ECTIVES:				-		
• To expla	in the solar radiation and its environmental impact to power.						
• To illust	rate the various collectors used for storing solar energy.						
• To illust	rate the various applications in solar energy.						
• To demonstrate the wind energy and biomass and its economic aspects.							
<ul> <li>To illustrate geothermal energy with other energy sources</li> </ul>							
INIT I PR	INCIPLES OF SOLAR RADIATION			(	)		
Role and potent	ial of new and renewable source, the solar energy option. Environ	nme	ntal	imp	act		
of solar power.	physics of the sun, the solar constant, extra-terrestrial and t	erre	stria	ul so	olar		
radiation. solar	radiation on titled surface, instruments for measuring solar rad	liatic	on a	nd	sun		
shine. solar radi	ation data						
UNIT II SO	LAR ENERGY COLLECTION			(	)		
Flat plate and co	oncentrating collectors, classification of concentrating collectors,	orie	ntati	on a	and		
thermal analysis	, advanced collectors.						
UNIT III SO	LAR ENERGY STORAGE AND APPLICATIONS			9	)		
Methods of Se	nsible heat, latent heat and stratified storage systems. Solar	app	olica	tion	s -		
heating/cooling	technique, solar ponds, photovoltaic energy conversion, solar	disti	llati	on	and		
drying.							
UNIT IV WI	ND ENERGY AND BIOMASS			9	)		
Sources and pot	entials, horizontal and vertical axis windmills, performance chara	icter	istic	s, B	letz		
criteria - bioma	ss: Principles of Bioconversion, Anaerobic/aerobic digestion, t	ypes	of	bio	gas		
digesters, gas y	ield, combustion characteristics of biogas, utilization for cookir	ıg, I	.C.	Eng	ine		
operation and ec	conomic aspects.						
UNIT V GE	OTHERMAL ENERGY			9	)		
Resources, type	s of wells, methods of harnessing the energy, potential in India.	Oce	ean e	ener	gy:		
OTEC, Principl	es utilization, setting of OTEC plants, thermodynamic cycles. T	idal	and	d wa	ave		
energy: Potentia	l and conversion techniques and their economics.						
	TOTAL:	45 I	PER	IO	DS		
COURSE OUT	COMES:						
At the end of the	e course, learners will be able to						
COI: Discuss the	the physics of solar radiation.						
CO2: Demonstr	ate the solar energy collectors and methodologies of storing solar	ener	gy.				
CO3: Demonstrate the application of solar energy in a useful way.							
CO4: Infustrate wind energy and biomass with its economic aspects.							
CO5: Illustrate the other forms of energy sources like wind, biogas and geothermal energies.							
1 Pai C D "N	: on Conventional Energy Sources" and Edition Khanna Publisher	20	15				
1. Kai G.D. N	on-Conventional Energy Sources, 2 Edition, Khanna Publishers	, ∠U	13.				

10 **BoS** Chairman

- 2. Twidell & Wier, "Renewable Energy Resources", 3rd Edition, CRC Press (Taylor & Francis), 2015.
- 3. Kothari D.P, Singhal ., K.C., "Renewable energy sources and emerging technologies", 2nd Edition, P.H.I, New Delhi, 2011

- Tiwari and Ghosal, "Renewable energy resources", 1st Edition, Narosa Publishing House, 2004
- 2. Ramesh R & Kumar K.U , "Renewable Energy Technologies", 1st edition, Narosa Publishing House, 2004
- 3. Mittal K M, "Non-Conventional Energy Systems", 1st Edition, Wheeler Publishing Co. Ltd, New Delhi, 2003

10

### 21PME15

### **BIOENERGY CONVERSION TECHNOLOGIES**

L	Т	Р	С
3	0	0	3

9

9

9

9

#### **COURSE OBJECTIVES:**

- To use the energy conversion technologies related to biomass
- To demonstrate the properties of biomass and its energy products
- To illustrate the feasibility of power production from biomass sources
- To use of the biochemical conversion technologies
- To demonstrate the separation of various elements

### UNIT I INTRODUCTION

Biomass as energy source – Sources – Biomass conversion processes – Biological – Thermal – Chemical – Hybrid conversions – Application of biomass conversion products – Biomass properties for conversion process – Physical properties : Particle size, distribution, heat capacity and thermal conductivity – Thermal properties : Proximate,

### UNIT II TORREFACTION

Torrefaction – products obtained – properties of torrified biomass – Physical and chemical – composition changes – torrefaction as pre-treatment process – Pyrolysis – types – effects of process parameters – Product characterization techniques – oxidation stability – Bio-oil up gradation – applications – Liquefaction – direct and indirect methods – advanced liquefaction techniques.

#### UNIT III BIOMASS GASIFICATION

Biomass gasification – chemistry – types of gasifiers – gasifier design : TDR, throughput, A/F ratio and equivalence ratio calculations – advanced gasification – fluidized bed gasifier – component design – cold fluidization tests – Electrical power production – Biomass combustion – types of combustors – Co-combustion and Co-firing – applications – Eutectic point of biomass ash.

UNIT IV BIOCHEMICAL CONVERSION TECHNOLOGIES

Stirred Tank Reactors; Batch Fermentation and Microbial Growth; Continuous Fermentation and Kinetics; Aeration and Oxygen Transfer

UNIT V BIOMASS SEPARATION

Centrifugation/Filtration for Biomass Separation; Distillation (bioethanol and biodiesel production); Membrane Processes (Ultrafiltration, microfiltration, Pervaporation (alcohol/water separations); Adsorptive Separations (zeolites and chromatography)

#### TOTAL: 45 PERIODS

## **COURSE OUTCOMES:**

At the end of the course, learners will be able to

CO1: Illustrate the properties of biomass and energy conversion process

CO2: Explain the characteristics of products obtained from biomass pyrolysis

CO3: Relate the basics of biomass gasification with gasifier design

CO4: Assess the potential of electrical power production from biomass

CO5: Interpret the separation of gases.

### **TEXT BOOKS:**

10

- 1. Sergio C. Capareda "Introduction to Biomass Energy Conversions", CRC Press, 2nd edition Taylor and Francis Group, 2019.
- 2. Sergio C. Capareda "Introduction to Renewable Energy Conversions", CRC Press, 1st edition Taylor and Francis Group, 2019.
- 3. Anju Dahiya, "Bioenergy: Biomass to Biofuels", Academic press, 3rd edition Elsevier Publication, 2014.

- 1. Erik Dahlquist, "Biomass as Energy Source: Resources, systems and applications", Sustainable Energy Developments series, CRC Press, 1st edition Taylor and Francis Group, 2012.
- 2. D.P.Kothari, K.C Singal and Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", 1st edition PHI Learning Private Ltd, New Delhi, 2011.
- 3. Godfrey Boyle, "Renewable Energy power for a sustainable future", 3rd Edition, Oxford University Press, 2012

### 21PME16

### **ENERGY STORAGE DEVICES**

L	Т	Р	C
3	0	0	3

9

9

9

9

#### **COURSE OBJECTIVES:**

- To explain the various types of energy storage.
- To describe the various applications of energy storage systems.
- To discuss the importance of energy storage.
- To summarize the knowledge of fuel cell and its applications.
- To explain the areas of energy storage systems and its applications in contemporary systems.

#### UNIT I INTRODUCTION TO ENERGY STORAGE SYSTEMS

Necessity of energy storage – types of energy storage – comparison of energy storage technologies – Applications

#### UNIT II THERMAL ENERGY STORAGE SYSTEMS

Thermal storage – Types – Modelling of thermal storage units – Simple water and rock bed storage system – pressurized water storage system – Modelling of phase change storage system – Simple units, packed bed storage units - Modelling using porous medium approach, Use of Transys

#### UNIT III ELECTRO CHEMICAL ENERGY CONVERSION SYSTEMS

Electro-chemical energy conversion and storage: Introduction to batteries, elements and operation of electrochemical cells, theoretical cell voltage and capacity, losses in cells; Battery classification, factors effecting battery performance, batteries for PV system.

#### UNIT IV FUEL CELL AND ITS APPLICATIONS

Fuel Cell – History of Fuel cell, Principles of Electrochemical storage – Types – Hydrogen oxygen cells, Hydrogen air cell, Hydrocarbon air cell, alkaline fuel cell, detailed analysis – advantage and drawback of each type.

### UNIT V APPLICATION OF ENERGY STORAGE SYSTEMS

Some areas of application of energy storage: Food preservation; Waste heat Recovery; Solar energy storage; Greenhouse heating; Power plant applications; Drying and heating for process industries.

### TOTAL: 45 PERIODS

### **COURSE OUTCOMES:**

At the end of the course, learners will be able to

- CO1: Describe the basic principles to study about energy storage systems.
- CO2: Discuss the performance parameters of various thermal energy storage systems.
- CO3: Explain the various electro chemical energy conversion systems and its drawbacks.

CO4: Summarize the various fuel cell and its types.

CO5: Discuss the concept of energy storage systems for commercial applications.

#### **TEXT BOOKS:**

- 1. James Larminie and Andrew Dicks, "Fuel cell systems Explained", 1st edition, Wiley publications, 2003.
- 2. Ru-shiliu, Leizhang, Xueliang sun, "Electrochemical technologies for energy storage and

10

conversion", 3rd edition, Wiley publications, 2012.

3. Johannes Jensen & Bent Sorensen, "Fundamentals of Energy Storage", 3rd edition, John Wiley & Sons, 1984

- 1. Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, 3rd edition John Wiley & Sons 2002
- 2. Rai G.D. "Non-Conventional Energy Sources", 2nd edition Khanna Publishers, 2015.
- 3. D.P.Kothari, K.C Singal and Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", 2nd edition PHI Learning Private Ltd, New Delhi, 2011.

**BoS Chairman** 

21PMF17	SOLAD ENERCY TECHNOLOCIES	L	Τ	Р	С		
211 111217	SOLAR ENERGY TECHNOLOGIES	3	0	0	3		
COURSE OBJECTIVES:							
• To learn and study the solar radiation and various solar collectors							
• To study the various solar thermal energy technologies and their applications							
To learn	about various solar PV cell materials and conversion techniques						
To learn	various Solar SPV systems designs and their applications						
To know	v about various solar passive building techniques for cooling and h	eati	ng				
UNIT I SC	LAR RADIATION AND MEASUREMENT		0	9	9		
Energy from Su	n – Solar Constant –Sun earth relationship – Spectral distribution o	f Ex	trate	rrest	trial		
Radiation – Vari	ation of Extraterrestrial Radiation – Solar angles–Sun path diagrams– Se	olar '	Time	e and	d its		
equation -Air 1	nass ratio - Radiation reaching Earth's surface - Measurement an	d es	stima	tion	on		
horizontal and ti	ted surfaces –Measurement devices for Solar Radiation						
UNIT II SC	LAR COLLECTORS			9	9		
Flat plate collect	tor thermal analysis - Testing methods-Evacuated tubular collectors	, –С	once	ntra	ting		
collectors – Clas	sification- Design and performance parameters-Tracking systems- Con	ipou	nd p	arab	olic		
concentrators – I	Parabolictrough concentrators-Concentrators with point focus-Heliostats-	– per	forn	hanc	e of		
the collectors							
UNIT III SC	LAR PV FUNDAMENTALS			ļ	9		
Semiconductor -	- properties - energy levels - basic equations of semiconductor device	es pl	nysic	s. S	olar		
cells – p-n junct	ion: homo and hetro junctions - metal-semiconductor interface - dark	and	illur	nina	tion		
characteristics -	figure of merits of solar cell – efficiency limits – variation of efficiency	y wi	th b	and-	gap		
and temperature-	efficiency measurements-high efficiency cells-Solar thermoPhotovoltaid	2					
UNIT IV SP	V SYSTEM DESIGN AND APPLICATIONS			ļ	9		
Solar cell array s	ystem analysis and performance prediction- Shadow analysis: reliability	-so	lar c	ell a	rray		
design concepts	- PV system design - design process and optimization - detailed arra	ıy de	esign	-stor	age		
autonomy-voltag	e regulation-maximum tracking-centralized and decentralized SPV sys	tems	-star	idalo	one-		
hybrid and grid	connected system-System installation - Operation and maintenances - fi	ield (	expe	rienc	ce –		
PV market analy	sis and economics of SPV systems.						
UNIT V SC	LAR PASSIVE ARCHITECTURE			ļ	9		
Thermal comfor	- bioclimatic classification - passive heating concepts: direct heat gai	n – 1	indir	ect l	heat		
gain – isolated	gain and sun spaces- passive cooling concepts: evaporative cooling-Ra	adiat	ive	cooli	ing-		
application of wi	nd, water and earth for cooling; shading-paints and cavity Walls for co						
	TOTAL:	45 ]	PER	lOI	DS		
COURSE OU	COMES:				ļ		

10 **BoS** Chairman

At the end of the course, learners will be able to

CO1: Illustrate solar radiation and its measurement

CO2: Identify various solar thermal energy technologies and their applications

CO3: Compare various solar PV cell materials and interpret factors influencing of conversion efficiency

CO4: Infer various SPV systems designs and their applications

CO5: Evaluate various solar passive building techniques for cooling and heating applications

#### **TEXT BOOK**

1. Chetan Singh Solanki, Solar Photo voltatics – Fundamentals, Technologies and Applications, 3rd PHI Learning Private limited, 2015.

2. John A.Duffie, William A.Beckman, Solar Engineering of Thermal Processes, 5th Edition, John Wiley & Sons, 2020.

3. Lovegrove K., Stein W., Concentrating Solar Power Technology, Wood head Publishing Series in Energy, Elsevier, 1st Edition, 2012

#### **REFERENCES:**

1. Solar Energy International, Photovoltaic–Design and Installation Manual, 1st Edition, New Society Publishers, 2004.

2. Sukhatme SP, Naya kJK, Solar Energy–Principle of Thermal Storage and collection, 4th Edition, Tata McGraw Hill, 2017.

3. Garg H P, Prakash J, Solar Energy – Fundamentals and Applications, 1st Edition, Tata McGraw Hill,2017.

21PMF18	ENERGY CONSERVATION IN INDUSTRIES		Т	Р	C
<b>211</b> 1 <b>11</b> 210	EVERGI CONSERVATION IN INDUSTRIES	3	0	0	3
COURSE OBJ	ECTIVES:				
To discu	ss the types of fuels used in Industries and their characteristics				
• To expla	in the techniques adopted for performance evaluation of thermal u	ıtilit	ties		
To description	be the working principle employed in VCRS and VAM systems				
• To sum	narize technical parameters considered in electricity billing a	ınd	the	los	ses
associate	d with a motor.				
• To expla	in the techniques available for energy conservation in electrical ut	iliti	es	<u>т ,</u>	0
UNIT I	NIKODUCTION argy Power Past & Present Scenario Of World: National Energy	w (	Tonei		9 tion
Data – Environme	entry – rower – rast & rresent Scenario Or World, National Energy	,у С	201150	mp	uon
UNIT II FN	FRCV CONSERVATION IN THERMAL LITILITIES			(	0
Thermal System	s: Stoichiometry Boilers Furnaces and Thermic Fluid Heat	ers	_Ef	ficie	ncv
Computation an	d Encon Measures Steam: Distribution & Usage: Steam Tra	ns	Cor	nden	sate
Recovery. Flash	Steam Utilization. Insulators & Refractories	г-,	201		
UNIT III EN	ERGY CONSERVATION IN OHER LITILITIES				9
Energy Conserv	ation In Major Utilities: Pumps, Fans, Blowers, Compressed	A	ir S	yste	ms,
Refrigeration An	d Air Conditioning Systems –Cooling Towers –D.G. Sets			•	
UNIT IV EN	ERGY AUDITING				9
Energy Auditing	Need, Types, Methodology And Barriers. Role Of Energy Manag	ers.	Inst	rume	ents
For Energy Audi	ting				
UNIT V EN	ERGY ECONOMICS				9
Energy Econom	cs – Discount Rate, Payback Period, Internal Rate of Return, Net	Pre	esent	: Va	lue,
Life Cycle Costi	ng –ESCO concepts				
	TOTAL:	45	PEF	lOI	DS
COURSE OUT	COMES:				
At the end of the	course, learners will be able to	mh	untio		
CO1: Explain u	the source for up domention on of the second subject to efficient co	IIIDU :4 a b	usuo 1	n 	L'_1
measures	ne cause for underperformance of thermal utilities and suggest su	nao	le re	mea	nai
CO3: Summariz	e the factors affecting the COP of a VCR and VAR system				
CO4: Describe t	he performance of induction motors and transformers				
CO5: Exaplin er	ergy conservation avenues of thermal and electrical utilities				
TEXT BOOKS					
1. L.C.Witt	e, P.S.Schmidt, D.R.Brown, "Industrial Energy Management and	Uti	lizat	ion"	
1 st edition	n, Hemisphere Publication, Washington, 1987.				
2. Eastop.T	D & Croft D.R, Energy Efficiency for Engineers and Technologi	sts,	$1^{st}$		
edition,L	ogman Scientific & Technical, ISBN-0-582-03184, 1990.				
3. Barney I	. Capehart, Wayne C. Turner and William J. Kennedy, "Guide to	Ene	ergy		
	120				
B.E. – MECHANIC	AL ENGINEERING (I TO VIII SEMESTERS) BoS Chairman	R-2(	021 (	CBC	S)

	Management", 7 th Edition, The Fairmont Press Inc., 2012.								
REFF	REFERENCES:								
1.	W.C.turner, "Energy Management Handbook"Wiley,1 st edition,NewYork,1982								
2.	W.R. Murphy and G. McKay "Energy Management" 1 st edition Butter worths,								
	London1987								
3.	Energy Manager Training Manual (4Volumes) available at								
	http://www.emea.org/gbook1.asp,a website administered by Bureau of Energy								
	Efficiency (BEE), a statutory body under Ministry of Power, Government of India. 2004.								

10 **BoS** Chairman

21PME19		FOUIPMENT FOR POLILITION CONTROL		Т	Р	С	
		EQUITALIATION CONTROL	3	0	0	3	
COURSE (	OBJI	ECTIVES:					
• To e	expla	in knowledge and understanding of causes and effects of air pollu	tion	and	thei	r	
cont	rollii	ng mechanisms.					
• To d	lescri	be knowledge on the principle and design of control of Indoor.					
• To d	liscu	ss a design of control of Particulate Contaminants					
• To d	lemo	nstrate a model for controlling Gaseous Contaminants					
• To s	umm	arize knowledge in air pollutant and its emerging trends.					
UNIT I	INT	RODUCTION				9	
Structure at	nd c	omposition of Atmosphere – Definition, Scope and Scales of	f Ai	r Po	ollut	$\frac{1}{100}$	
Sources and	d cla	ssification of air pollutants and their effect on human health, ve	geta	tion	. ani	imals.	
property, ae	sthet	ic value and visibility- Ambient Air Ouality and Emission standa	rds		,	,	
UNIT II	ME	TEOROLOGY				9	
Effects of n	netec	prology on Air Pollution - Fundamentals, Atmospheric stability,	Inv	ersi	on, V	Wind	
profiles and	l stac	ck plume patterns- Atmospheric Diffusion Theories - Dispersio	n m	odel	ls, P	lume	
rise.							
UNIT III	CO	NTROL OF PARTICULATE CONTAMINANTS				9	
Factors affe	ecting	g Selection of Control Equipment – Gas Particle Interaction – V	Vork	ing	prin	ciple,	
Design and	per	formance equations of Gravity Separators, Centrifugal separate	ors	Fabı	ric f	ilters,	
Particulate S	Scrut	obers, Electrostatic Precipitators – Operational Considerations.			1		
UNIT IV	CO	NTROL OF GASEOUS CONTAMINANTS				9	
Factors affe	ecting	g Selection of Control Equipment – Working principle, Design	anc	pei	rtorr	nance	
equations of	of at	sorption, Adsorption, condensation, Incineration, Bio scrubbe	ers,	B10	tılt	ers –	
Process con	trol a	and Monitoring - Operational Considerations.			1		
UNIT V	INI	OOOR AIR QUALITY MANAGEMENT	1 D	•• ••		9	
Sources, typ	pes a	nd control of indoor air pollutants, sick building syndrome and	i Bu	11d11	ng r	elated	
illness- Sou	urces	and Effects of Noise Pollution – Measurement – Standar	ds	-Co	ntro	I and	
Preventive i	meas	ures.	<b>-</b>	<b>-</b> D		0.0.0	
COUDSE		TOTA	L: 4	5 P	ERI	ODS	
At the end of	JUI of the	COMES:					
CO1	: Su	mmarize knowledge and understanding of causes and effects of a	r no	lluti	on a	nd	
their	con	trolling mechanisms	r po	11411	on u	na	
CO2	2. Ex	plain knowledge on the principle and design of control of Indoor					
CO3	CO3: Demonstrate a design of control of Particulate Contaminants						
CO4	CO4: Discuss a model for controlling Gaseous Contaminants						
CO5: Explain the knowledge in air pollutant and its emerging trends							
TEXT BOO	OKS						
	<b>J 1 1 1</b>	•					
		122					

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, 3rd Edition, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", 3rd Edition, Waveland press, Inc 2017.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", 1st Edition, Allied Publishers (P) Ltd., India 2002.

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", 3rd Edition, Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", 1st edition, Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", 3rd Edition John Wiley and Sons, Inc, 2000.

	ENVIRONMENT SUSTAINABILITY AND IMPACT	L	Τ	Р	С		
21PME20	ASSESSMENT	3	0	0	3		
COURSE OBJ	ECTIVES:	<u> </u>	<u> </u>	<u> </u>			
To discu	• To discuss the need methodology documentation and usefulness of environmental						
impact as	ssessment						
• To expla	in the knowledge related to the broad field of environmental ris	k as	sess	men	ıt.		
importan	t processes that control contaminant transport				- )		
To demo	nstrate the environmental impact assessment documentation proc	ess.					
To sumi	marize the environment management plan, ethical and quali	tv a	spec	cts d	of		
environn	nental impact assessment.	.,	-p				
To discur	ss the hazard identification and management technique						
UNIT I INT	<b>RODUCTION</b>			8	8		
Historical develo	opment of Environmental Impact Assessment (EIA). EIA in Proje	ect C	ycle	e. Le	egal		
and Regulatory	aspects in India Types and limitations of EIA EIA proce	ss- s	scre	enin	g –		
scoping - setting	g – analysis – mitigation. Cross sectorial issues and terms of refe	eren	ce ir	ı EL	A –		
Public Participat	ion in EIA-EIA Consultant Accreditation.						
UNIT II IM	PACT INDENTIFICATION AND PREDICTION			1	.0		
Matrices – Netv	vorks - Checklists -Cost benefit analysis - Analysis of alternat	ives	- S	oftw	'are		
packages for EL	A – Expert systems in EIA. Prediction tools for EIA – Mathem	atica	ıl m	odel	ing		
for impact pred	iction - Assessment of impacts - air - water - soil - noise	– bi	olog	gical			
Cumulative Imp	act Assessment						
UNIT III SO	CIAL IMPACT ASSESSMENT AND EIA DOCUMENTATI	ON		8	8		
Social impact as	ssessment - Relationship between social impacts and change in	com	mur	ity a	and		
institutional arra	angements. Individual and family level impacts. Communitie	es ir	n tra	ansit	ion		
Documentation	of EIA findings – planning – organization of information and	l vis	ual	disp	olay		
materials.							
UNIT IV EN	VIRONMENTAL MANAGEMENT PLAN			7	7		
EIA Report pre	paration. Environmental Management Plan - preparation, impl	eme	ntati	ion	and		
review – Mitig	ation and Rehabilitation Plans – Policy and guidelines for	i pla	anni	ng a	and		
monitoring prog	grammes – Post project audit – Ethical and Quality aspects of $C_{\rm eff}$	Env	VIroi	nmei	ntal		
Impact Assessm	ent-Case Studies				-		
UNIT V EN	VIRONMENTAL RISK ASSESSMENT AND MANAGEME	NT n E			2		
	isk assessment framework-Hazard identification -Dose Responsement	SE E	valu	12110.			
exposure Assess	shedd Event tree and fault tree analysis Multimedia and	mu	II— I Itina	TAZ	UP		
and FEWIA medal	ing of contaminant. Risk Characterization Risk communication	niu.	Em.	ui V	vay		
Prenaredness Di	ang of containmant- Kisk Characterization Kisk communication	11 -		Jigel	псу		
		45	DFI		ne		
COURSE OUT	COMES:	<b>4</b> 3 .		101	60		
COCHDE OUT							

6

At the end of the course, learners will be able to

- CO1: Describe the impacts and risks that will be caused by projects or industries and the methods to overcome these impacts.
- CO2: Explain the cost benefit analysis of environmental impact assessment
- CO3: Discuss the concept of environmental impact assessment documentation for proper findings.
- CO4: Summarize the environment management plan.
- CO5: Explain the methods of risk assessment and management.

### **TEXT BOOKS:**

- 1. Sam Mannan, Lees' Loss Prevention in the Process Industries, Hazard Identification, Assessment and Control, 4th Edition, Butterworth Heineman, 2012.
- 2. Lawrence, D.P., Environmental Impact Assessment Practical solutions to recurrent problems, 3rd edition, Wiley-Interscience, New Jersey. 2003
- 3. Kolluru Rao, Bartell Steven, Pitblado R and Stricoff "Risk Assessment and Management Handbook",3rdedition, McGraw Hill Inc., New York, 1996.

- 1. Canter, L.W., "Environmental Impact Assessment", and McGraw Hill, 1st edition, New York. 1996
- 2. Cutter, S.L., "Environmental Risk and Hazards", 2ndedition,Prentice-Hall of India Pvt. Ltd., New Delhi, 1999.
- 3. Raghavan K. V., Khan A, "Methodologies in Hazard Identification and Risk Assessment, 1st Edition, Institution of Chemical Engineers by CLRI, 1997.

**BoS** Chairman

## VERTICAL 4 - LOGISTICS AND SUPPLY CHAIN MANAGEMENT

21PME21	LOGISTICS IN MANUFACTURING, SUPPLY CHAIN	L	Т	Р	C
	AND DISTRIBUTION	3	0	0	3
COURSE OBJ	ECTIVES:				
• To apply	the foundational knowledge in logistics.				
To relate	the various logistics strategies.				
To illust	trate operations in supply chain.				
To interp	pret the functions of distribution.				
To demo	nstrate the planning in Distribution flows.				
UNIT I INT	FRODUCTION LOGISTICS			9	9
Introduction – S	cope of logistics in business, Logistics and Supply Chain Manage	men	t, C	ore	and
support activitie	s of logistics; Logistical integration hierarchy; Integrated Logistic	s; O	pera	ting	5
objectives; Bar	riers internal integration; Logistical performance cycles;	Sup	oply	cł	nain
relationships –	Channel participants, Channel structure, Basic functions, Ri	sk,	pow	ver	and
leadership.					
UNIT II LO	GISTICS SYSTEM DESIGN			(	9
Logistics reenging	neering, Logistical environmental assessment, Time based logistic	es, A	ntic	ipat	ory
and Response ba	ased strategies, Alternative strategies, Logistical operational arran	gem	ents	, Tii	me
based control teo	chniques; Integration theory – Location structure, Transportation	econ	omi	es,	
Inventory econo	mies, Formulating logistics strategy.				
UNIT III CO	NCEPTS OF SUPPLY CHAIN				9
Service and man	ufacturing supply chain dynamics - Evolution of supply chain ma	nage	eme	nt -	_
Multiple views a	and flows - Service supply chains - Manufacturing supply chains -	Mea	isure	es of	ť
supply chain per	formance - Bullwhip effect.				
UNIT IV DIS	STRIBUTION				<u>9</u>
Role of Distribu	tion in Supply chain, Distribution channels – Functions, resources	s, Op	perat	10 <b>n</b> s	s 1n
Distribution, D	besigning Distribution network models - its features - a	dvar	ntag	es	and
disadvantages					
UNIT V PLA	ANNING twody planning Distribution naturally desisions. Distributio				9
planning (DDD)	awork planning, Distribution network decisions, Distribution	on f	equ	irem	ient
planning (DRP)	<b>TOTAT</b>	15	DFF		ng
COURSE OUT	COMES:	43	r e f	10	09
At the end of the	e course, learners will be able to				
CO1: Demonst	trate the various functions of logistics				

19 BoS Chairman

- CO2: Explain the various types of logistics strategies
- CO3: Apply the operations in supply chain to increase the productivity
- CO4: Explain the importance of distribution in supply chain.
- CO5: Show the applications of planning in Distribution

## **TEXT BOOKS:**

- 1. Sunil Chopra, Peter Meindl, "Supply Chain Management: Strategy, Planning, and Operation", 6th edition, Pearson, 2014.
- 2. Raghuram and N. Rangaraj, "Logistics and Supply chain Management Cases and Concepts", 1st Edition, Macmillan Business Books, 2000.
- 3. John J. Coyle, Edward J. Bardi and C. John Langley Jr., "The Management of Business Logistics A supply chain Perspective", 10th Edition, Thomson Business Information, 2016.

- Paul Schönsleben, "Integral Logistics Management: Planning and Control of Comprehensive Supply", 2nd Edition, CRC Press Company, 2016.
- 2. David Frederick Ross, "Distribution Planning and Control: Managing in the Era of Supply Chain last edition", Springer, 2015.
- 3. Shaw, "G-P Forges Strong Customer Bonds Using Supply Chain Expertise, Innovative Marketing," Pulp & Paper, October 77:10 (2003), 26-30.

21DME22	21PME22 MATERIALS MANAGEMENT		Τ	Р	С	
			0	0	3	
COURSE OBJI	ECTIVES:					
• To apply	the significance of Materials Management					
To demo	nstrate meaning of ABC Analysis.					
• To illust	rate characteristics of coding System.					
• To interp	ret the functions of Purchase Department					
To demo	nstrate objectives of Negotiation.					
UNIT I MA	TERIALS MANAGEMENT: AN INTRODUCTION			(	9	
Introduction, M	leaning and Scope of Materials Management, Objectives	s of	M	ater	ials	
Management Si	gnificance of Materials Management, Materials Management in	Oth	er A	rea	s of	
Management F	unctions -Materials Management and Design/Developmen	ıt,	Μ	ater	ials	
Management and	d Production, Materials Management and Sales, Materials M	anag	gem	ent	and	
Finance & Acco	unting					
UNIT II AB	C ANALYSIS				9	
Meaning of AI	3C Analysis, Objective of ABC Analysis, Advantages of A	ABC	C A	naly	'sis,	
Limitations of A	BC Analysis and Simple Numerical of ABC Analysis					
UNIT IIICODIFICATION AND STANDARDIZATION9					9	
Basis of Codifie	Basis of Codification - Codification by Group Classification and characteristics of a Good					
Coding System,	Types of Coding, Standardization and Its Benefit.					
UNIT IV PUI	RCHASING MANAGEMENT				9	
Introduction, Me	eaning of Purchase Management, objectives of scientific purcha	asing	g, fu	ncti	ons	
of Purchasing department- Responsibilities of the Purchase department and Duties of Purchasing						
Department, Purchase Parameters, Kardex System, Purchasing Policy and Procedure.						
UNIT V NE	GOTIATION				9	
Introduction, meaning of Negotiation, objectives of Negotiation, Techniques of Negotiation						
Negotiator - Qualities of a Good Negotiator, Tactics and Strategies in Negotiation - Factors						
Influencing Tactics, Preparation for Negotiation, Phases of Negotiation Request for Quotation						
(RFQ)						
TOTAL: 45 PERIODS						
COURSE OUTCOMES:						
At the end of the	At the end of the course, learners will be able to					
COI: Apply the	e various the Functions of Purchase Department					
CO2: Relate va	rious meaning of ABC Analysis.					

- CO3: Relate the characteristics of coding System and its benefits.
- CO4: Interpret the functions and responsibilities of Purchase Department.
- CO5: Explain the objectives of Negotiation and its factors.

## **TEXT BOOKS:**

- 1. Stephen N. Chapman, Tony Arnold. J R, "Introduction to Materials Management" 8th Edition, Pearson, 2007.
- Gopalkrishanan. P, Sundaresan. M, "Materials Management: An Integrated Approach". 1st Edition, PHI Learning Pvt. Ltd, 2004.
- 3. J K. Shridhar Bhat, "Production and Materials Management", 1st Edition, Himalaya Publishing House, 2008

- 1. Chary. S.N, "Production and Operations Management", 6th Edition, Tata McGraw Hill, 2019
- 2. Evrim Ursavas Guldogan, "Port Operations and Container Terminal Management: with applications", 6th Edition, Springer, 2011.
- 3. Arnold, Champman and Ramakrishnan, "Introduction to Materials Management", 5th Edition, Pearson Education, 2007.

21PME23       ENTERPRISE RESOURCE PLANNING       L       I       T       P       C         3       0       0       3       0       0       3         COURSE OBJECTIVES:         • To show the basic concepts of ERP         • To illustrate ERP implementation in organization       • To use various ERP modules         • To apply ERP concepts in real time case studies       9         UNIT I       MRP AND INTRODUCTION TO ERP       9         Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.       9         UNIT II       ERP IMPLEMENTATION       9         Traditional approach to information system design, new approach to system development; ERP, mementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.         UNIT II       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.         UNIT IV       ERP MARKET       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Compa							
Image: Course objectives:       3       0       0       3         COURSE OBJECTIVES:       •       To show the basic concepts of ERP       •       To illustrate ERP implementation in organization         •       To use various ERP modules       •       To discover the market potential of ERP         •       To discover the market potential of ERP       •       0       9         Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.       9         UNIT II       ERP IMPLEMENTATION       9         Traditional approach to information system design, new approach to system development; ERP       Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.       9         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT IV       ERP CASE STUDIES       9         <	21PME23 ENTERPRISE RESOURCE PLANNING		L	T	P	C	
COURSE OBJECTIVES: <ul> <li>To show the basic concepts of ERP</li> <li>To illustrate ERP implementation in organization</li> <li>To use various ERP modules</li> <li>To discover the market potential of ERP</li> <li>To apply ERP concepts in real time case studies</li> </ul> UNIT I         MRP AND INTRODUCTION TO ERP         9           Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.         9           UNIT II         ERP IMPLEMENTATION         9           Traditional approach to information system design, new approach to system development; ERP         Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.         9           Maccounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.         9           Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.         9           UNIT IV         ERP CASE STUDIES         9           HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.         9				0	0	3	
<ul> <li>To show the basic concepts of ERP <ul> <li>To illustrate ERP implementation in organization</li> <li>To use various ERP modules</li> <li>To discover the market potential of ERP</li> <li>To apply ERP concepts in real time case studies</li> </ul> </li> <li>UNIT I MRP AND INTRODUCTION TO ERP 9</li> <li>Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.</li> <li>UNIT II ERP IMPLEMENTATION 9</li> <li>Traditional approach to information system design, new approach to system development; ERP Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.</li> <li>UNIT III BUSINESS MODULES IN ERP 9</li> <li>Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.</li> <li>UNIT IV ERP MARKET 9</li> <li>Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.</li> <li>UNIT V ERP CASE STUDIES 9</li> <li>HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.</li> <li>TOTAL: 45 PERIODS</li> <li>COURSE OUTCOMES:</li> <li>At the end of the course, learners will be able to COC): To illustrate basic concepts of ERP and MRP.</li> <li>CO2: To idemonstrate the ERP implementation process</li> </ul>	COURSE OBJI	ECTIVES:					
<ul> <li>To show the basic concepts of ERP</li> <li>To illustrate ERP implementation in organization</li> <li>To use various ERP modules</li> <li>To discover the market potential of ERP</li> <li>To apply ERP concepts in real time case studies</li> <li>UNIT I MRP AND INTRODUCTION TO ERP 9</li> <li>Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.</li> <li>UNIT II ERP IMPLEMENTATION 9</li> <li>Traditional approach to information system design, new approach to system development; ERP Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.</li> <li>UNIT III BUSINESS MODULES IN ERP 9</li> <li>Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.</li> <li>UNIT IV ERP MARKET 9</li> <li>Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.</li> <li>UNIT V ERP CASE STUDIES 9</li> <li>HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.</li> <li>TOTAL: 45 PERIODS</li> <li>COURSE OUTCOMES:</li> <li>At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2: To demonstrate the ERP implementation process</li> </ul>							
<ul> <li>To illustrate ERP implementation in organization</li> <li>To use various ERP modules</li> <li>To discover the market potential of ERP</li> <li>To apply ERP concepts in real time case studies</li> <li>UNIT I MRP AND INTRODUCTION TO ERP 9</li> <li>Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.</li> <li>UNIT II ERP IMPLEMENTATION 9</li> <li>Traditional approach to information system design, new approach to system development; ERP Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.</li> <li>UNIT III BUSINESS MODULES IN ERP 9</li> <li>Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.</li> <li>UNIT IV ERP MARKET 9</li> <li>Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.</li> <li>UNIT V ERP CASE STUDIES 9</li> <li>HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.</li> <li>TOTAL: 45 PERIODS</li> <li>COURSE OUTCOMES:</li> <li>At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP.</li> <li>CO2: To demonstrate the ERP implementation process</li> </ul>	• To show	the basic concepts of ERP					
<ul> <li>To use various ERP modules</li> <li>To discover the market potential of ERP</li> <li>To apply ERP concepts in real time case studies</li> <li>UNIT I MRP AND INTRODUCTION TO ERP 9</li> <li>Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.</li> <li>UNIT II ERP IMPLEMENTATION 9</li> <li>Traditional approach to information system design, new approach to system development; ERP Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.</li> <li>UNIT III BUSINESS MODULES IN ERP 9</li> <li>Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.</li> <li>UNIT IV ERP MARKET 9</li> <li>Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.</li> <li>UNIT V ERP CASE STUDIES 9</li> <li>HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.</li> <li>TOTAL: 45 PERIODS</li> <li>COURSE OUTCOMES:</li> <li>At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP.</li> <li>CO2: To demonstrate the ERP implementation process</li> </ul>	• To illustr	ate ERP implementation in organization					
<ul> <li>To discover the market potential of ERP</li> <li>To apply ERP concepts in real time case studies</li> <li>UNIT I MRP AND INTRODUCTION TO ERP</li> <li>Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.</li> <li>UNIT II ERP IMPLEMENTATION</li> <li>Traditional approach to information system design, new approach to system development; ERP Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.</li> <li>UNIT III BUSINESS MODULES IN ERP</li> <li>Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.</li> <li>UNIT IV ERP MARKET</li> <li>Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.</li> <li>UNIT V ERP CASE STUDIES</li> <li>HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.</li> <li>TOTAL: 45 PERIODS</li> <li>COURSE OUTCOMES:</li> <li>At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process</li> </ul>	• To use va	arious ERP modules					
• To apply ERP concepts in real time case studies         UNIT I       MRP AND INTRODUCTION TO ERP       9         Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.       9         UNIT II       ERP IMPLEMENTATION       9         Traditional approach to information system design, new approach to system development; ERP       9         Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       CO2 : To demonstrate the ERP implementation process	• To disco	ver the market potential of ERP					
UNIT I       MRP AND INTRODUCTION TO ERP       9         Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.       9         UNIT II       ERP IMPLEMENTATION       9         Traditional approach to information system design, new approach to system development; ERP       Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP.       CO2 : To demonstrate the ERP implementation process	To apply	ERP concepts in real time case studies			<del></del>	0	
Introduction - overview of MRP I and MRP II, capacity requirements planning, history of ERP, evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.          UNIT II       ERP IMPLEMENTATION       9         Traditional approach to information system design, new approach to system development; ERP Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.       9         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality maragement, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       0	UNITI MR	P AND INTRODUCTION TO ERP	•			9	
evolution of ERP, comparison of ERP with traditional systems, benefits of ERP, need for ERP, overview of modules in ERP.          UNIT II       ERP IMPLEMENTATION       9         Traditional approach to information system design, new approach to system development; ERP Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.       9         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       V	Introduction - ov	verview of MRP I and MRP II, capacity requirements planning, h	isto	ry o	f EF	RP,	
overview of modules in ERP.       9         INIT II       ERP IMPLEMENTATION       9         Traditional approach to information system design, new approach to system development; ERP       Implementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         HRM, finate and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       9	evolution of ER	P, comparison of ERP with traditional systems, benefits of ERP,	nee	d fo	r EF	RP,	
UNIT IIERP IMPLEMENTATION9Traditional approach to information system design, new approach to system development; ERPImplementation: Requirement analysis, alternatives, life cycle, implementation methodology; Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.UNIT IIIBUSINESS MODULES IN ERP9Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.9Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.9HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.9COURSE OUTCOMES: At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process9	overview of mod	lules in ERP.					
Traditional approach to information system design, new approach to system development; ERP         Implementation: Requirement analysis, alternatives, life cycle, implementation methodology;         Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       COURSE	UNIT II ER	P IMPLEMENTATION			•	9	
Implementation: Requirement analysis, alternatives, life cycle, implementation methodology;         Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       CO2 : To demonstrate the ERP implementation process	Traditional appre	bach to information system design, new approach to system development	opm	ent:	ER	Р	
Imponentation: Requirement analysis, automatives, ince eyere, imprementation memorology,         Selection of an ERP package for suitability for manufacturing, hidden costs; Case studies.         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       CO2	Implementation.	Requirement analysis alternatives life cycle implementation	i me	tho	dolc	σν	
Image: Section of an EAC package for stationity for manufacturing, inductive costs, case studies.         UNIT III       BUSINESS MODULES IN ERP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         UNIT IV       ERP MARKET       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       CO2 : To demonstrate the ERP implementation process	Selection of an F	RP package for suitability for manufacturing hidden costs: Case	stuc	lies	4010	·6J,	
UNIT III       BOSINESS MODULES IN EKP       9         Accounts, production planning, human resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       CO2 : To demonstrate the ERP implementation process		SINESS MODULES IN EDD	stuc	nes.		0	
Accounts, production planning, number resources, plant maintenance, materials management, quality management, sales and distribution, ware house and supply chain; Case studies.       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process       CO2: To demonstrate the ERP implementation process	Accounts produ	SINESS MODULES IN ERP		noa		9 mt	
UNIT IV       ERP MARKET       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People       Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A         Comparative Assessment and Selection of ERP Packages and Modules.       9         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       At the end of the course, learners will be able to       TOTAL: 45 PERIODS         CO1: To illustrate basic concepts of ERP and MRP.       CO2 : To demonstrate the ERP implementation process	Accounts, prout	iction planning, numan resources, plant mannenance, materials	illa dia	mag	eme	m,	
UNIT IV       ERP MARKET       9         Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People       Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A         Comparative Assessment and Selection of ERP Packages and Modules.       Inc. (SSA); QAD; A         UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       TOTAL: 45 PERIODS         COURSE OUTCOMES:       At the end of the course, learners will be able to       CO1: To illustrate basic concepts of ERP and MRP.         CO2 : To demonstrate the ERP implementation process       CO2 : To demonstrate the ERP implementation process	quality managem	lent, sales and distribution, ware nouse and supply chain, Case su	iules	5.			
Market place, dynamics, SAP R3, SAP HANA Baan Company, Oracle Corporation, People Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A Comparative Assessment and Selection of ERP Packages and Modules. UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       9         COURSE OUTCOMES:       TOTAL: 45 PERIODS         At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP.       0         CO2 : To demonstrate the ERP implementation process       0	UNIT IV ERP MARKET					9	
Soft, JD Edwards World Solutions Co, System Software Associates, Inc. (SSA); QAD; A         Comparative Assessment and Selection of ERP Packages and Modules.         UNIT V       ERP CASE STUDIES         9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.         TOTAL: 45 PERIODS         COURSE OUTCOMES:         At the end of the course, learners will be able to         CO1: To illustrate basic concepts of ERP and MRP.         CO2 : To demonstrate the ERP implementation process	Market place, d	ynamics, SAP R3, SAP HANA Baan Company, Oracle Corpo	oratio	on,	Peop	ple	
Comparative Assessment and Selection of ERP Packages and Modules. <b>9</b> HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules. <b>TOTAL: 45 PERIODS COURSE OUTCOMES:</b> At the end of the course, learners will be able to         CO1: To illustrate basic concepts of ERP and MRP.         CO2 : To demonstrate the ERP implementation process	Soft, JD Edwar	ds World Solutions Co, System Software Associates, Inc. (SS	5A);	, Q/	AD;	А	
UNIT V       ERP CASE STUDIES       9         HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules.       TOTAL: 45 PERIODS         TOTAL: 45 PERIODS         COURSE OUTCOMES:         At the end of the course, learners will be able to       CO1: To illustrate basic concepts of ERP and MRP.         CO2 : To demonstrate the ERP implementation process       COURSE OUTCOMES	Comparative As	sessment and Selection of ERP Packages and Modules.					
HRM, finance and costing, production planning, materials management, sales and distribution, integration of modules. TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process	UNIT V ER	P CASE STUDIES				9	
integration of modules. TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process	HRM, finance a	nd costing, production planning, materials management, sales an	nd di	istri	buti	on,	
TOTAL: 45 PERIODS         COURSE OUTCOMES:         At the end of the course, learners will be able to         CO1: To illustrate basic concepts of ERP and MRP.         CO2 : To demonstrate the ERP implementation process	integration of modules.						
TOTAL: 45 PERIODS         COURSE OUTCOMES:         At the end of the course, learners will be able to         CO1: To illustrate basic concepts of ERP and MRP.         CO2 : To demonstrate the ERP implementation process	0					- ~	
COURSE OUTCOMES:         At the end of the course, learners will be able to         CO1: To illustrate basic concepts of ERP and MRP.         CO2 : To demonstrate the ERP implementation process		TOTAL:	45	PER		DS	
At the end of the course, learners will be able to CO1: To illustrate basic concepts of ERP and MRP. CO2 : To demonstrate the ERP implementation process	COURSE OUT	COMES:					
CO1: To inustrate basic concepts of EKP and MKP. CO2 : To demonstrate the ERP implementation process	At the end of the	course, learners will be able to					
CO2. To demonstrate the EKF implementation process	CO1: 10 illustra	te basic concepts of EKP and MKP.					
CO3 · Categorize the ERP modules based on its application	$CO2 \cdot TO$ defined	e the FRP modules based on its application					

CO3 : Categorize the ERP modules based on its application. CO4 :To show the real world utilization of various ERP Packages

CO5 :To illustrate ERP with real time problems

### **TEXT BOOKS:**

- 1. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning Concepts and Practice", 1st Edition, PHI, 2010.
- 2. Alexis Leon, "ERP Demystified", 2nd Edition, Tata McGraw Hill, India, 2008.
- 3. Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", 2nd Edition, Thompson Course Technology, 2010.

- 1. Rahul V. Altekar, "Enterprise Resource Planning", 4th Edition Tata McGraw Hill, 2010.
- 2. David L OLSON, "Managerial Issues of ERP Systems", 1st Edition, Tata-McGraw Hill, India, 2004.
- 3. Mary Summer, "Enterprise Resource Planning", 2nd Edition, Pearson Education, 2005.

21PME24 WAREHOUSING AUTOMATION AND CONTAINER LOGISTICS		L	Τ	Р	С
		3	0	0	3
COURSE OBJ	ECTIVES:				
• To apply	the foundational knowledge in warehousing receiving and issuin	g.			
To relate	the various warehouse types.				
• To illust	rate operations in warehouse.				
• To apply	the foundational knowledge in container management.				
To illustr	ate operations in containers.				
UNIT I RE	CEIVING AND ISSUING			9	9
Receiving- Logi	stics support for Inward Transportation, Unloading, Inspection,	Acce	eptai	nce	and
Recording; Stor	ing: Space allocation, Facilitation to stocking, Guarding & R	lecon	rding	g; R	Risk
bearing- Process	ing- Grading and branding – Disinfecting services.				
Issuing: Order	preparation, Picking, Dispatching/ Delivery & Record	ing	Ha	ndli	ing,
Transportation &	& Storage of ISO Containers- Utility and Advantages of warehous	uses	s- Pr	oble	ems
and issues in rec	eiving processes.				
UNIT II WA	REHOUSE TYPES			9	9
Warehouse Ty	pes: Own Warehouses- Hired Warehouses- Private Wareh	nous	es-	Pul	blic
Warehouses- C	overnment Warehouses- Bonded Warehouses- Co-operative	e W	Vare	hous	ses-
Distribution Warehouses- Fulfilment/ Consolidation Warehouses .Warehouses Providing Value					
Added Services	- Cross Docking and Trans-loading Warehouses- Break Bul	k W	are	hous	ses-
Storage Wareho	uses- Refrigerated Warehouses Characteristics of ideal warehous	ses-	Wai	reho	use
Layout- Principles and Facilities Types.					
UNIT III OP	ERATIONS IN WAREHOUSE			9	9
Internal Operation	ons: Measures and metrics of warehouse operations- Logistics in	the	ware	ehou	ıse-
Localization of	materials in a warehouse- Identification and classification of	Ma	ateria	als	and
products in the warehouse- Managing the material/products turns in warehouse (FIFO/LIFO) -					
Problems and issues in shipment processes. Warehousing Equipment: Material Handling					
equipment and Systems Safety Matting, Industrial Safety Equipment- Storage types and storage					
unit management					
UNIT IV MU	LTIMODAL TRANSPORT			9	9
Container, Types of containers- Multimodal Transport- Advantages- Freight Rate Structure					
& Shipping Regulations, Principal factors impacting ocean freight rates- International					
Commercial Te	rms- Multimodal Transport Network System- Advanced system	m ir	n Co	ontai	iner

0 BoS Chairman

management - Sea Freight Container details- Customs connection & Multimodal Transport in International Trade Maritime Frauds. Container crimes. ICT in Multimodal transport.

UNIT V CONTAINER TERMINOLOGY

9

Container characteristics- ISO standards- Types and purpose- Container terminology-Container integrity and security. Container packing. Container seals and securing-Techniques-Container ownership and management- Owning vs. Leasing- Storage, maintenance and repair. Container ship types, sizes and characteristics-Layout and design of a modern Containership- Lack of deck obstructions, speed. The economics of container ship operations owning vs. Chartering – Operating costs.

### TOTAL: 45 PERIODS

### **COURSE OUTCOMES:**

At the end of the course, learners will be able to

- CO1: Apply the various functions of Warehouse.
- CO2: Relate various types of warehouses and their advantages
- CO3: Relate the metrics of warehouse operations.
- CO4: Apply the various functions in containers.
- CO5: Show the various applications procedures in containers.

### **TEXT BOOKS:**

- 1. David J. Piasecki, "Inventory Accuracy: People, Processes, & Technology", 1st Edition, OPS publication, 2003.
- 2. Jeroen.P. Van Den Berg, "Integral Warehouse Management: Management", 1st Edition, Create space Independent Pub 2007.
- 3. Max Muller "Essentials of Inventory Management", 3rd Edition, AMACOM, 2009.

- 1. Dr. Hariharan K. V, "Container & Multimodal Transport Management", 1st Edition, Shroff Publishers and Distributors Pvt. Ltd, 2002.
- 2. Kap Hwan Kim, Hans-Otto Günther, "Container Terminals and Cargo Systems: Design, Operations Management, and Logistics Control Issues", 1st Edition, Springer, 2010.
- 3. Urgen Sorgen Frei, "Port Business", 2nd Edition, BoD Books, 2000.

21PME25	21PME25 MATERIAL HANDLING EQUIPMENT, REPAIR AND 1		P	C 2		
COURSE OI	DIECTIVES.	U	U	3		
COURSE OF	BJECTIVES:					
• To cho	bose the material handling system for various engineering application					
• To pre	epare the various material handling equipment and systems for the case					
• To cor	nstruct suitable system for the industrial requirement					
• To app	ply the knowledge of maintenance procedures for material handling devi	ces.				
To cor	nstruct maintenance management system for based on requirement.					
UNIT I P	PRINCIPLES OF MATERIAL HANDLING		(	9		
Classification	s of the materials handling equipment, their characteristics and	appli	icati	ion,		
principles, pa	ckaging and storage of materials, operation analysis and study of trave	el di	agra	ams		
and flow pro-	cess charts. Preparation of a new proposal for an integrated materia	ls ha	and	ing		
system. Prote	ctive devices handling of fluids and multiphase systems. Handling of	refri	gera	ited		
cargo.						
UNIT II V	ARIOUS MATERIAL HANDLING EQUIPMENT AND SYSTEM	S	(	9		
Theory and c	onstruction of the various parts of Mechanical Handling devices, wire	e rop	bes	and		
chains, hooks	, shackles, grabs, ladles and lifting electromagnets, sheaves, sprockets	and	dru	ms,		
runners and ra	ails, buffers and limit switches.					
UNIT IIIDESIGN OF MATERIAL HANDLING EQUIPMENT9			9			
Design of simple mechanical handling devices, viz., screw jacks, pulley blocks, winches, hoists			ists			
and capstans, wind lasses. Need, Comparison with conventional systems, Equipment like						
industrial robots and automatically guided vehicles						
UNIT IV R	REPAIR METHODS FOR MATERIAL HANDLING EQUIPMEN	Т	(	9		
Repair methods for beds, slideways, spindles, gears, lead screws and bearings - Failure analysis						
- Failures and their development - Logical fault location methods - Sequential fault location.						
UNIT V N	MAINTENANCE FOR MATERIAL HANDLING EQUIPMENT		(	9		
Repair methods for Material handling equipment - Equipment records -Job order systems -						
Use of computers in maintenance.						
TOTAL: 45 PERIODS						
COURSE OUTCOMES:						
At the end of	At the end of the course, learners will be able to					
CO1: Illustrat	te the material handling system for the application					
CO2: Choose	CO2: Choose the various material handling equipment and systems					

CO3: Construct suitable mechanical handling system for the requirement

Г

CO4: Discover the repair methods for material handling devices

CO5: Prepare maintenance management system for industrial case studies

## **TEXT BOOKS:**

- 1. James Apple, Material Handling System Design, 1st Edition, John Wiley, 2009
- 2. Siddhartha Ray, Introduction to Materials Handling, 2nd Edition, New Age International Pvt Ltd Publishers, 2017
- 3. Venkataraman .K "Maintenance Engineering and Management", 1st Edition, PHI Learning, Pvt Ltd., 2007.

## **REFERENCES:**

1. Immer J. R., Material Handling, 1st Edition, Tata McGraw Hill Publication, 1953

- 2. Materials Handling Equipment N. Rudenco, MIR Publisher, 2nd Revised Edition, 1997.
- 3. Srivastava S.K., "Industrial Maintenance Management", S. Chand and Co., 2nd Edition 2002.

### 21PME26

### PROCESS PLANNING AND COST ESTIMATION

L	Т	Р	С
3	0	0	3

10

10

8

8

9

#### **COURSE OBJECTIVES:**

- To interpret the process planning concepts for selecting proper equipment and tools.
- To explain the various process planning activities.
- To prepare the cost estimation for various products after process planning.
- To calculate the product cost of job done by various manufacturing methods.
- To manipulate the machining time for various operations carried out in different machines.

#### UNIT I INTRODUCTION TO PROCESS PLANNING

Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process selection-.Production equipment and tooling selection.

### UNIT II PROCESS PLANNING ACTIVITIES

Process parameters calculation for various production processes-Selection jigs and fixtures election of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies.

### UNIT III INTRODUCTION TO COST ESTIMATION

Importance of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – Estimating procedure- Estimation labour cost, material cost- allocation of overhead charges- Calculation of depreciation cost.

#### UNIT IV PRODUCTION COST ESTIMATION

Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop.

#### UNIT V MACHINING TIME CALCULATION

Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations ,Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding.

### **TOTAL: 45 PERIODS**

### **COURSE OUTCOMES:**

At the end of the course, learners will be able to

CO1: Explain the process planning concepts and appropriate selection of equipment and tools for various industrial products.

CO2: Interpret the process planning activity chart.

CO3: calculate the various types of cost in the development of product.

CO4: Manipulate the costs of forging, welding and casting process to make or buy the product.

CO5: Calculate the machining time for various machining operations.

### **TEXT BOOKS:**
- 1. Peter scallan, "Process planning, Design/Manufacture Interface", 1st edition, Elsevier science technology Books, 2003.
- 2. Panneerselvam. R and Sivasankaran. P, "Process Planning and Cost Estimation", 1st edition, PHI Learning, 2015.
- 3. T.R. Banga and S.C. Sharma "A Text-Book of Mechanical Estimating & Costing", 17th Edition, Khanna Publishers, New Delhi, 2018.

- 1. Khanna. R.B, "Production and operations management", 2nd Edition, PHI Learning, 2015.
- 2. Adithan.M, "Process Planning and Cost Estimation", 2nd Edition, New Age International Publisher, 2013.
- Chary S. N., "Production & Operations Management", 5th edition, Tata McGraw Hill, 2012

# PRODUCTION PLANNING AND CONTROL

L	Т	Р	С
3	0	0	3

9

9

9

## **COURSE OBJECTIVES:**

- To demonstrate concepts of production planning and control.
- To apply the principles of work study.
- To apply the principles of product planning and process planning.
- To prepare the various production scheduling and dispatching techniques.
- To explain the recent trends of PPC.

# UNIT I INTRODUCTION

Objectives and benefits of planning and control-Functions of production control - Types of Production – job- batch and continuous-Product development and design-Marketing aspect -Functional aspects-Operational aspect-Durability and dependability aspect- Aesthetic aspect. Profit consideration-Standardization, Simplification & Specialization.

# UNIT II WORK STUDY

Method study, Basic procedure – Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study - Work measurement -Techniques of work measurement - Time study – Performance rating – Activity sampling -Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

# UNIT III PRODUCT PLANNING AND PROCESSPLANNING

Product planning - Extending the original product information - Value analysis - Problems in lack of product planning - Process planning and routing-Pre requisite information needed for process planning - Steps in process planning - Quantity determination in batch production -Machine capacity, Line balancing-Analysis of process capabilities in a multi-product system.

# UNIT IVPRODUCTION SCHEDULING9ProductionControl Systems - Loading and scheduling - Master scheduling - Scheduling rules -Gantt charts-Perpetual loading - Basic scheduling problems - Flow production scheduling -Batch productionscheduling - Product sequencing - Material requirement planning -Dispatching- Progress reporting and expediting -Manufacturing lead time - Master production

schedule along with lead time and MPP
UNIT VINVENTORY CONTROL AND RECENT TRENDS IN PPC9
Inventory control - Purpose of holding stock - Effect of demand on inventories - Orderin
procedures. Two bin system - Periodic review system - Fixed order quantity system - Orderin
cycle system - Determination of economic order quantity and economic lot size - ABC analysis
Recorder procedure - Elements of JIT - Fundamentals of MRP II and ERP.
TOTAL: 45 PERIOD
COURSE OUTCOMES:
At the end of the course, learners will be able to
CO1: Explain the various components and function of production planning and control.
CO2: Apply the principles of work study and time study activities.
CO3: Use the principles of product planning and process planning.
CO4: Prepare various production scheduling and dispatching techniques.
CO5: Describe the recent trends like Manufacturing Requirement Planning (MRP-II) &
Enterprise Resource Planning (ERP).
TEXT BOOKS:
1. Martand Telsang, "Industrial Engineering and Production Management", 3 rd Edition, S
Chand, 2018.
2. Panneerselvam, R., "Production and Operations Management", 3 rd Edition, Prentice Ha
of India, New Delhi,2012
3. Chary S. N., "Production & Operations Management", 5 th Edition, Tata McGraw Hil
2012.
REFERENCES:
1. Samuel Eilon, "Elements of Production Planning and Control", 3 rd Edition,
Macmillan 2007.
2. Elwood S. Buffa and Rakesh K. Sarin, "Modern Production / Operations Management"

- Elwood S. Buffa and Rakesh K. Sarin, "Modern Production / Operations Management", 8th Edition, John Wiley and Sons, 2011.
- 3. Jain K. C, Aggarwal L. N., "Production Planning Control and Industrial Management", 6th Edition, Khanna Publishers, 2004.

**BoS Chairman** 

# VERTICAL 5: THERMAL POWER PROCESSES AND EQUIPMENT

21PME28	THERMAL POWER ENGINEERING	L 3	Т 0	P 0	C 3
COURSE OBJI	ECTIVES:	U		v	U
• To apply	the concepts of thermodynamics law.				
To demo	nstrate various air standard cycles.				
To illustr	ate the function of thermal power plant.				
• To apply	various process of waste heat recovery systems.				
To interp	ret various types of Cogeneration.				
UNIT I FU	NDAMENTAL OF THERMODYNAMICS			9	9
Heat and work	transfer, definition and comparison, sign convention. Displace	nen	t wo	ork	and
other modes of v	vork. P-V diagram. Zeroth law of thermodynamics - concept of the	emp	erati	ure	and
thermal equilibri	um- relationship between temperature scales -new temperature s	cale	s. Fi	irst	law
of thermodynam	nics. Heat Reservoir, source and sink. Heat Engine, Refrigerate	or, H	Ieat	pu	mp.
Statements of se	cond law and its corollaries.				
UNIT II AIF	R STANDARD CYCLES			ļ	9
Air Standard C	Cycles - Otto, Diesel, Dual, Brayton – Cycle Analysis, Per	forn	nanc	e a	nd
Comparison – R	ankine, reheat and regenerative cycle				0
UNII III III. Dombino ovolo	ERMAL POWER PLANT AND ITS PARTS	1.D.	:1		9
Rankine Cycle -	s. Condensers. Steam & Heat rate. Subsystems of thermal power r	n D0 Nant	s = 1	5, гі Бие	
and ash handling	g, Draught system, Feed water treatment.	Jian		l uc	L
UNIT IV WA	STE HEAT RECOVERY SYSTEMS			9	9
Source and utilis	ation of residual heat. Heat pipes, Heat pumps, Recuperative and	Reg	ener	ativ	re
Advantages and	parallel now- counter now and cross now neal exchangers. Econ- limitations of heat recovery systems	omi	: As	pec	ls.
UNIT V CO	GENERATION				9
Cogeneration Pr	inciples, Types – Topping and Bottoming cycles - Advantages a	nd li	imita	atio	ns -
Cycle Analysis,	Applications of Cogeneration in Sugar, Paper, Steel and G	lass	ind	ustr	ies.
Economics of Co	ogeneration				
	TOTAL:	45 ]	PER	IO	DS
COURSE OUT	COMES:				
CO1: Solve the	e concepts of thermodynamics law				
CO2: Interpret	the air standard cycles.				
CO3: Analyze	the function of thermal power plant				
CO4: Analyze	the process of waste heat recovery systems				
CO5: Calculate	e the various types of Cogeneration				
TEXT BOOKS					
1. Kothanda	araman.C.P, Domkundwar. S,Domkundwar. A.V., "A course in th	erm	al		

10

- Engineering", 5th Edition, Dhanpat Rai & sons , 2016
  2. Rajput. R. K., "Thermal Engineering" 6th Edition, S.Chand Publishers, 2017.
  3. Rudramoorthy, R, "Thermal Engineering", 3rd Edition, Tata McGraw-Hill, New Delhi,2003

- Ganesan V. "Internal Combustion Engines", 3rd Edition, Tata Mcgraw-Hill 2012
   Ramalingam. K.K., "Thermal Engineering", 4th Edition, Scitech Publications Pvt. Ltd., 2009.
- 3. Sarkar, B.K, "Thermal Engineering" 6th Edition, Tata McGraw-Hill Publishers, 2007.

21PME29	AUTOMOBILE ENGINEERING	L	Т	Р	С
		3	0	0	3
COURSE OBJ	ECTIVES:				
To illustr	rate the construction and working principle of various parts of an a	autor	nob	ile.	
To demo	nstrate the engine auxiliary system.				
To demo	nstrate the transmission systems in vehicle.				
• To show	the steering, brakes and suspension systems.				
• To show	assembling and dismantling of engine parts and transmission syst	em.			
UNIT I VE	HICLE STRUCTURE AND ENGINES			9	)
Types of auton	nobiles, vehicle construction and different layouts, chassi	s, f	iram	e a	and
body, Vehicle as	erodynamics - IC engines -components- functions and materials,	Vari	lable	e Va	lve
Timing.					
UNIT II EN	GINE AUXILIARY SYSTEMS			9	)
Electronically c	ontrolled gasoline injection system for SI engines, Electronic	cally	con	ntrol	led
diesel injection s	system (Unit injector system, Rotary distributor type), Electronic	ignit	ion	syst	em
(Transistorized	coil ignition system, capacitive discharge ignition system), '	Furb	o cl	harg	gers
(WGT, VGT), E	ngine emission control by three way catalytic converter system, I	Emis	sion	nor	ms
(Euro and BS).					
UNIT III TR	ANSMISSION SYSTEMS			9	)
Clutch-types and	l construction, gear boxes- manual and automatic, gear shift me	chan	ism	s, O	ver
drive, transfer b	ox, fluid flywheel, torque converter, propeller shaft, slip joints, u	inive	ersal	joi	nts,
Differential and	rear axle, Hotchkiss Drive and Torque Tube Drive			1	
UNIT IV STI	EERING, BRAKES AND SUSPENSION SYSTEMS			9	)
Steering geomet	ry and types of steering gear box-Power Steering, Types of Front	Axl	е, Т	ypes	s of
Suspension Sys	tems, Pneumatic and Hydraulic Braking Systems, Antilock E	Braki	ng S	Syst	em
(ABS), electroni	c brake force distribution (EBD) and Traction Control.			1	
UNIT V RE	CENT TRENDS IN AUTOMOTIVE SYSTEMS			9	)
Multi Point F	uel Injection, Common Rail Diesel Injection, Automatic	Tra	insm	11881	on,
Continuously va	ariable transmission - GDA Engine and HVT engine Electr	1c a	nd	Hyt	orid
Vehicles, Fuel C	ell.				
	TOTAL:	45 I	PER	101	DS
At the end of the	COMES:				
CO1 Explain t	be construction and working principle of various parts of an autor	nohi	le		
CO2: Discuss t	he engine auxiliary system		10.		
CO3: Demonst	rate the transmission systems in vehicle				
CO4: Discuss f	he steering, brakes and suspension systems				
CO5: Demonst	rate assembling and dismantling of engine parts and transmission	syst	em		
		29.50			

0

#### **TEXT BOOKS:**

- 1. Ganesan, V., Internal Combustion Engines, 3rd Edition, Tata McGraw-Hill, New Delhi, 2012.
- 2. Kirpal Singh, Automobile Engineering- Vol. I and II, 4th Edition, Standard Publishers, New Delhi, 2011.
- 3. Ramalingam. K .K, Automobile Engineering, 6th Edition, Scitech publications, 2011

#### **REFERENCES:**

- 1. Kamaraju Ramakrishna, Automobile Engineering, 5th Edition, PHI Learning pvt. Ltd., New delhi2012.
- Mathur M.L. and Sharma. 'A Course in Internal Combustion Engines', 2nd Edition R.P. Dhanpat Rai Publications, 2009.
- 3. K. M. Gupta, Automobile Engineering- Vol I and II, 1st Edition, Umesh Publications, 2007

**BoS** Chairman

21PME30	ADVANCED INTERNAL COMBUSTION ENGINEERING	L 3	T O	P 0	C 3
COURSE OBJ	ECTIVES:	U	v	U	•
To illust	rate various functions of SI engines.				
• To demo	onstrate various functions of CI engines.				
To expla	ain the pollution formations and their control				
To demo	onstrate various alternate fuels and their properties				
To demo	rate various recent development in IC engines				
UNIT I SP	ARK IGNITION ENGINES				9
Mixture require	ments – Fuel injection systems – Monopoint, Multipoint & Dire	ect i	njec	tion	-
Stages of comb	ustion – Normal and Abnormal combustion – Knock - Factors af	fecti	ng l	cnoc	ck
– Combustion c	hambers		0		
UNIT II CO	OMPRESSION IGNITION			9	9
Diesel Fuel Inj	ection Systems - Stages of combustion – Knocking – Factors affe	cting	g kn	ock	_
Direct and Indi	rect injection systems – Combustion chambers – Fuel Spray beh	avio	r – 1	Spra	ıy
structure and sp	ray penetration – Air motion - Introduction to Turbocharging.			_	-
UNIT III PO	LLUTANT FORMATION AND CONTROL			9	9
Pollutant – So	urces - Formation of Carbon Monoxide, Unburnt hydrocarbo	n, C	Dxid	es o	of
Nitrogen, Smo	ke and Particulate matter – Methods of controlling Emission	s –	Cat	alyt	ic
converters, Sele	ective Catalytic Reduction and Particulate Traps - Methods of m	easi	irem	ent	_
Emission norms	and Driving cycles.				
UNIT IV AI	TERNATIVE FUELS			9	9
Alcohol, Hydro	ogen, Compressed Natural Gas, Liquefied Petroleum Gas and	Bio	Die	esel	-
Properties, Suit	ability, Merits and Demerits - Engine Modifications.				
UNIT V RE	CENT TRENDS				9
Air assisted C	ombustion, Homogeneous charge compression ignition engine	s –	Va	riab	le
Geometry turbo	chargers - Common Rail Direct Injection Systems - Hybrid Elect	ric V	/ehi	cles	—
NOx Adsorber	rs - On-board Diagnostics.				
	TOTAL:	45 ]	PER	lOI	DS
COURSE OUT	TCOMES:				
At the end of th	e course, learners will be able to				
COI: Demons	trate various functions of SI engines.				
CO2: Illustrate	e various functions of CI engines.				
CO3: Illustrate	e the pollution formations and their control				
CO4: Explain	various alternate rueis and their properties				
CO5: Demons	trate various recent development in IC engines.				
TEXT BOOKS	com KK "Internal Combustion Engine Fundamentals" (h Edition			ak	
I. Kamalin	gam. K.K., "Internal Compussion Engine Fundamentals", 6" Editio	on, S	CITE	ecn	

6

Publications, 2002.

- Ganesan, "Internal Combustion Engines", 2nd Edition, TMH, 2002.
   John Heywood, "Internal Combustion engines", 3rd Edition, McGraw Hill, 1988.

- 1. Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines" 4th Edition, Dhanpat Rai & Sons 2007.
- 2. Duffy Smith, "Auto Fuel Systems", 2nd Edition, The Good Heart Willcox Company, Inc., 1987.
- 3. Eric Chowenitz, "Automobile Electronics", 4th Edition, SAE Publications, 1995

21PME31 REFRIGERATION AND AIR CONDITIONING	C
	3
COURSE OBJECTIVES:	
• To illustrate the principles of operations in different Refrigeration & Air conditioning	5
systems	
To discuss vapour compression refrigeration system	
• To demonstrate the various refrigeration system	
To solve psychrometric process and systems	
• To describe knowledge on design aspects of Refrigeration & Air conditioning systems	
UNIT IINTRODUCTION9	
Introduction to Refrigeration - Unit of Refrigeration and C.O.P Ideal cycles- Refrigerar	nts
Desirable properties – Classification - Nomenclature - ODP & GWP.	
UNIT IIVAPOUR COMPRESSION REFRIGERATION SYSTEM9	
Vapour compression cycle: p-h and T-s diagrams - deviations from theoretical cycle - s	ub
cooling and super heating- effects of condenser and evaporator pressure on COP- multi pressu	ıre
system - low temperature refrigeration - Cascade systems - problems. Equipment's: Type	of
Compressors, Condensers, Expansion devices, Evaporators.	
UNIT IIIOTHER REFRIGERATION SYSTEMS9	
Working principles of Vapour absorption systems and adsorption cooling systems – Steam	jet
refrigeration- Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration	l -
Magnetic - Vortex and Pulse tube refrigeration systems.	
UNIT IVPSYCHROMETRIC PROPERTIES AND PROCESSES9	
Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree	of
saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperatu	ire
Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditionit	ng
processes, mixing of air streams.	
UNIT V     AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION     9	
Air conditioning loads: Outside and inside design conditions; Heat transfer through structur	re,
Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat loa	ıd;
Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature	&
chart, calculation of summer & winter air conditioning load; Classifications, Layout of plan	ts;
Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressu	ıre
and Humidity sensors, Actuators & Safety controls.	~
TOTAL: 45 PERIOD	NS IS
COUKSE OUTCOMES:         At the end of the course learners will be able to	
CO1: Illustrate the different properties of the refrigerants	

CO3: Demonstrate the concepts of various refrigeration systems.

CO4: Manipulate the psychrometric properties and processes.

CO5: Demonstrate the load estimation of air conditioning system

# **TEXT BOOKS:**

- Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010.
- Manohar Prasad, "Refrigeration and Air Conditioning", 3rd Edition, New age international (P) limited, New Delhi, 2021.
- 3. R.S.Khurmi & J.K Gupta, "Refrigeration and Air Conditioning" Revised Edition, S. Chand Publication, 2019

- Stoecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", 2nd Edition, McGraw Hill, New Delhi.
- P.L.Ballaney, ". Refrigeration and Air Conditioning" Khanna publishers, 1st Edition, New Delhi, 1972.
- Andrew D. Althouse, Carl h. Turnquist and Alfred F. Bracciano, "Modern Refrigeration and Air Conditioning" 2nd Edition, The goodheart-willcox company, INC, 2012

21PME32	GAS DYNAMICS AND JET PROPULSION	L	T	P	<u>С</u>
COUDSE OB II		3	U	U	3
	the concert of icentury is condition for solving the mehlems in a		a <b>la 1</b> a	fla	
• To apply ducts.	the concept of isentropic condition for solving the problems in	vari	able	110	w
• To calcul	ate heat transfer and friction in constant area ducts.				
• To apply	the normal and oblique shock concept for finding various parame	ters	•		
• To apply	basic knowledge in jet propulsion.				
• To demo	nstrate the basic principle of cryogenics and rocket propulsion				
UNIT I BAS	SIC CONCEPTS AND ISENTROPIC FLOWS			ļ	)
Energy and mon	nentum equations of compressible fluid flows - Stagnation state	s, N	Iach	wa	ves
and Mach cone -	- Effect of Mach number on compressibility - Isentropic flow th	irou	gh v	varia	ble
ducts – Nozzle a	nd Diffusers.				
UNIT II FLO	OW THROUGH DUCTS			ļ	)
Flows through co	onstant area ducts with heat transfer (Rayleigh flow) and Friction	(Fai	nno	flov	v) —
variation of flow	properties.				
UNIT III NO	RMAL AND OBLIQUE SHOCKS			9	)
Governing equat	tions - Variation of flow parameters across the normal and ob	liqu	e sh	lock	s –
Prandtl – Meyer	relations – Applications.				
UNIT IV JET	PROPULSION			ļ	)
Theory of jet pro	pulsion – Thrust equation – Thrust power and propulsive efficien	cy -	- Op	erat	ing
principle, cycle	analysis and use of stagnation state performance of ram jet, tur	boje	et, ti	ırbo	fan
and turbo prop er	ngines.				
UNIT V SPA	CE PROPULSION			9	)
Types of rocket	engines - Propellants-feeding systems - Ignition and combustic	on –	Th	eory	v of
rocket propulsio	n – Performance study – Staging – Terminal and characteris	stic	vel	ocity	у —
Applications – sp	pace flights-Basics of cryogenics.				
	TOTAL:	45 ]	PER	lOI	DS
COURSE OUT	COMES:				
At the end of the	course, learners will be able to				
COI: Interpret th	the concept of compressible flows in variable area ducts.				
CO2: Apply the	concept of compressible flows in constant area ducts.				
CO3: Examine t	he effect of compression and expansion waves in compressible flo	W.			
CO4: Use the co	ncept of gas dynamics in Jet Propulsion.				
CO5: Apply the	concept of gas dynamics in Space Propulsion				
TEXT BOOKS		0.1.7			
<ol> <li>Anderson</li> <li>Yahya, S</li> </ol>	n, J.D., "Modern Compressible flow", 3 rd Edition, McGraw Hill, 2 .M. "Fundamentals of Compressible Flow", 3 rd Edition, New Age	012 Inte	erna	tion	al
<del>_</del> ·					

19

(P) Limited, New Delhi, 2002.

3. Sutton. G.P., "Rocket Propulsion Elements", 5th Edition, John Wiley, New York, 2010. **REFERENCES:** 

- 1. Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", 1st Edition Longman Group Ltd., 1980
- 2. Ganesan. V., "Gas Turbines", 3rd Edition, Tata McGraw Hill Publishing Co., New Delhi, 2010.
- 3. Shapiro. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", 2nd Edition, John Wiley, New York, 1953.
- 4. Zucrow. N.J., "Principles of Jet Propulsion and Gas Turbines", 1st Edition, John Wiley, New York, 1970.

21PME33	POWER PLANT ENGINEERING	L 3	<b>T</b>	P (	C 3
COURSE OBJ	ECTIVES:				
To demo	nstrate the overview of thermal power plants				
To illustr	ate diesel, gas turbine and combined cycle power plants.				
To interp	pret nuclear power plant				
To interp	bret various renewable energies				
To calcul	late the power tariff and load factors				
UNIT I CO	AL BASED THERMAL POWER PLANTS			10	
Rankine cycle - Boilers, Turbine and ash handlir systems.	improvisations, Layout of modern coal power plant, Super Critica s, Condensers, Steam & Heat rate, Subsystems of thermal powe ng, Draught system, Feed water treatment. Binary Cycles and	ıl Boi r plaı l Cog	ilers, nts – genei	, FB - Fue ratio	ટ કો n
UNIT II DII PL	ESEL, GAS TURBINE AND COMBINED CYCLE POWER ANTS			10	
Otto, Diesel, Du	al & Brayton Cycle - Analysis & Optimization. Components of	Diese	el ano	d Ga	ιS
Turbine power	plants. Combined Cycle Power Plants. Integrated Gasifier ba	sed (	Com	bine	d
Cycle systems.					
UNIT III NU Decise of Nucle	CLEAR POWER PLANIS	4a 117	I a sul si	7	ſ
Nuclear Reactor Deuterium-Uran Reactors. Safety	s : Boiling Water Reactor (BWR), Pressurized Water Reactor (P ium reactor (CANDU), Breeder, Gas Cooled and Liquid measures for Nuclear Power plants.	WR), Meta	, CA al C	Nad oole	a d
UNIT IV PO	WER FROM RENEWABLE ENERGY			10	
Hydro Electric including Turbin (SPV), Solar Th	Power Plants – Classification, Typical Layout and associate nes. Principle, Construction and working of Wind, Tidal, Solar ermal, Geo Thermal, Biogas and Fuel Cell power systems.	ed co Phot	mpo to V	onent oltai	:s .c
UNIT V EN	ERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF WER PLANTS			8	
Power tariff typ criteria, relative Pollution contro Plants.	pes, Load distribution parameters, load curve, Comparison of merits & demerits, Capital & Operating Cost of different l technologies including Waste Disposal Options for Coal and	site pow Nucle	sele er p ear F	ectio lants Powe	n 3. er
COURSE OUT	COMES:	43 Г	EN		3
At the end of the	e course, learners will be able to				
CO1: Examine t	he function and the parts of the coal based Thermal Power plant.				
CO2: Demonstr	ate the power plants based on gas power cycles.				
CO3: Examine t	he Nuclear Reactors in Nuclear power plant.				
CO4: Illustrate r	power from Renewable energy sources.				
CO5: Report the	e energy, economic and Environmental issues of power plant.				

0

#### **TEXT BOOKS:**

- 1. Nag. P.K., "Power Plant Engineering", 3rd Edition, Tata McGraw Hill Publishing Company Ltd., 2008
- 2. El-Wakil. M.M., "Power Plant Technology", 1st Edition Tata McGraw Hill Publishing Company Ltd., 2010.
- 3. Arora and Domkundwar, "Power plant engineering" 8th Edition, Dhanpat rai & co. pvt. Ltd. 2016

- 1. Black & Veatch, Springer, "Power Plant Engineering", 1st Edition, 1996.
- 2. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998.
- 3. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.

21OCH02	MATERIALS CHEMISTRY	L	Т	Р	С
	(Common to all B.E / B.Tech. Programmes)	3	0	0	3
COURSE OBJ	ECTIVES:	-		Ū	
To desc	ribe the working principles of adhesives and lubrican	ts.			
To reali	ze the characteristics of explosives and propellants.				
• To reco	gnize the significant applications of glasses and abras	ives.			
• To appr	when the importance of smart materials.				
• To sum	marize the applications of sensor materials.				
UNIT-I	ADHESIVES AND LUBRICANTS				9
Adhesives-Intro	oduction and classification - bonding process of adh	esives	- phys	ical and	l chemical
factors influence	ing adhesive action -development of adhesive stren	gth-lu	brican	ts-class	sification -
mechanism of	lubrication- properties of lubricating oils-viscosity-	redwo	od vis	scomete	er method-
flash and fire po	bint-determination -cloud and pour point-determination	n –oili	ness.		
UNIT-II	EXPLOSIVES AND PROPELLANTS				9
Explosives-Intr	oduction and classification -characteristics- precau	tions c	luring	storage	e- blasting
fuses – prepara	tion of important explosives (TNT, GTN and RDX)	- uses	of exp	plosives	sRocket
Propellants- cl	assification, essential characteristics of rocket propell	ant.			
UNIT III	GLASSES AND ABRASIVES				9
Glasses-Introdu	ction- manufacture of glass- special types of glasses	(safety	glasse	es, optic	al glasses,
toughened glas	sses and laminated glasses) - Abrasives -classif	fication	ı - cł	naracter	istics and
applications – n	nanufacture of abrasive paper and cloth.				
UNIT IV	SMART MATERIALS				9
Introduction to	o smart materials – properties – components – c	classifi	cation	– pie	ezoelectric
materials – el	ectrostrictive materials – magnetostrictive materia	ls –	rheolo	ogical n	naterials –
thermo response	ive materials – electrochromic materials – fullerer	nes –	biomi	metic n	naterials –
smart gels – sh	ape memory alloys – industrial applications.				-
UNIT V	SENSOR MATERIAL				9
Introduction to	sensor material - classification and physico –chemic	al prop	perties	of sens	or-sensing
mechanism-che	mical and electrochemical sensors for environmenta	l pollut	tion n	ionitori	ng-sensor-
characterisation	, calibration sensor reliability, aging test-failure me	chanis	ms and	d their	evaluation
and stability stu	ay-biosensor instrumentation- transducers-industrial a	аррпса	tions.	45 1	DEDIODS
COURSE OUT	<b>COMES</b> . At the and of the course learners will be	abla to		45 1	PERIODS
COURSE OUI	nd the working principle of adhesives and lubricents	able to			
CO 1. Understa	he characteristics of explosives and propellents.				
CO 2. Identify t	ad the applications glasses and abrasives				
CO J: Interpret	the characteristics of smart materials and relevant and	licatio	na		
CO 4. Interpret	e importance of sensor materials	meano	115.		
Text Book.					
1. Jain and	l Jain A Text book of Engineering Chemistry, Dha	nnat Ra	ai Pub	lishing	Company
New De	whi 17 th Edition 2019				company,
2 Malini	S Anantha Raju KS Chemistry of Engineering	Materi		RS Duk	lichers &
2. Wanni.	s, Analitia Raju R.S, Chemistry of Engineering	iviate 11	ais, C		manera &
	nois pyr nu, new Denni, 1 Eunion, 2022.	Corre	nr. 11.	Had N	Dall-
ord prive	an v, materials Science, McGraw Hill Publishing	Compa	iny inn	nieu, N	ew Deim,
3 th Edit	ion, 2017.				
Reference Bool	KS:				

1 .S.S. Dara and S.S. Umare, A Text Book of Engineering Chemistry, S Chand Publishers and Company limited, New Delhi, 6th Edition, 2019.

2.Harry. R. Allcock, Introduction to Materials Chemistry, Wiley publication, U.S, 2nd Edition, 2019.
3.C.V. Agarwal, C. Parameswara Murthy, Andra Naidu, BS Publications, Hyderabad, 9th Edition, 2018.

# **VERTICAL 6: INDUSTRIAL SYSTEM ENGINEERING**

			-		
21PME34	PRINCIPLES OF MANAGEMENT	L	T	P	<b>C</b>
		3	U	0	3
COURSE OBJ	the importance of knowledge in management				
• To predic	returns the process of planning in an apponing tion				
• To demo	nstrate the process of planning in an organization.				
• To illustr	ate functions of an industry.				
• To use di	ifferent motivational techniques and leadership skills in the organization	izat	ion.		
UNIT I INT	<b>TRODUCTION TO MANAGEMENT AND ORGANIZATION</b>	NS			9
Definition of Ma	anagement – Science or Art – Manager Vs. Entrepreneur - types	s of	mar	nage	rs -
managerial roles	and skills – Evolution of Management – Scientific, human rel	atio	ns .	svsi	tem
and contingency	approaches – Types of Business organization - Sole proprietorsh	ip. 1	parti	ners	hip.
company-public	and private sector enterprises - Organization culture and Environ	mer	nt –	Cur	rent
trends and issues	s in Management.				
UNIT II PLA	ANNING			(	9
Nature and purp	oose of planning – planning process – types of planning – obje	ctive	es –	set	ting
objectives – po	licies – Planning premises – Strategic Management – Plann	ing	То	ols	and
Techniques – De	ecision making steps and	0			
UNIT III OR	GANISING			(	9
Nature and purp	pose – Formal and informal organization – organization chart	- 0	rgai	nizat	tion
structure – type	s – Line and staff authority – departmentalization – delegation	of	auth	norit	v –
centralization an	d decentralization – Job Design - Human Resource Management	– H	R Pl	ann	ing,
Recruitment, sel	ection, Training and Development, Performance Management, G	Care	er p	lann	ing
and management	t.		1		U
UNIT IV DIF	RECTING				9
Foundations of i	ndividual and group behaviour – motivation – motivation theories	s – n	notiv	vatio	onal
techniques – job	satisfaction – job enrichment – leadership – types and theories	of l	eade	ershi	р –
communication	– process of communication – barrier in communicatio	n -	- e	ffec	tive
communication -	- communication and IT.				
UNIT V CO	NTROLLING			9	9
System and proc	cess of controlling – budgetary and non-budgetary control techn	niqu	es –	- use	e of
computers and I	T in Management control – Productivity problems and manage	mer	nt –	con	trol
and performance	e – direct and preventive control – reporting.				
	TOTAL:	45	PEF	RIO	DS
<b>COURSE OUT</b>	COMES:				
At the end of the	course, learners will be able to				
CO1: Apply the	e foundational knowledge in management.				
CO2: Relate the	e various planning.				
CO3: Illustrate	various functions of organization.				
CO4: Interpret	the functions of motivation.				
CO5: Demonst	rate the practices in budget and reporting.				
	10				
	154				

#### **TEXT BOOKS:**

- 1. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.
- 3. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.

#### **REFERENCES:**

- 1. Robert Kreitner & Mamata Mohapatra, "Management", 1st Edition, Biztrantra, 2008.
- 2. Harold Koontz & Heinz Weihrich, "Essentials of Management", 1st Edition, Tata McGraw Hill, 1998.
- 3. Tripathy PC & Reddy PN, "Principles of Management", 1st Edition, Tata McGraw Hill, 1999

**BoS** Chairman

211 MESS       TOTAL QUALITY MANAGEMENT       3       0       0       3         COURSE OBJECTIVES:         • To apply the foundational knowledge in Total Quality Management.         • To relate the various TQM Principles.       •       •       •         • To illustrate various TQM Tools and Techniques I.       •       •       •
<ul> <li>COURSE OBJECTIVES:</li> <li>To apply the foundational knowledge in Total Quality Management.</li> <li>To relate the various TQM Principles.</li> <li>To illustrate various TQM Tools and Techniques I.</li> <li>To interpret the functions of TOM Tools and Techniques II.</li> </ul>
<ul> <li>To apply the foundational knowledge in Total Quality Management.</li> <li>To relate the various TQM Principles.</li> <li>To illustrate various TQM Tools and Techniques I.</li> <li>To interpret the functions of TOM Tools and Techniques II.</li> </ul>
<ul> <li>To relate the various TQM Principles.</li> <li>To illustrate various TQM Tools and Techniques I.</li> <li>To interpret the functions of TOM Tools and Techniques II.</li> </ul>
<ul> <li>To illustrate various TQM Tools and Techniques I.</li> <li>To interpret the functions of TOM Tools and Techniques II.</li> </ul>
• To interpret the functions of TOM Tools and Techniques II
• To interpret the functions of TQW Tools and Techniques II.
• To demonstrate the practices in Quality Management System.
UNIT I INTRODUCTION 9
Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of
product and service quality - Basic concepts of TQM - TQM Framework - Contributions of
Deming, Juran and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer
Satisfaction, Customer complaints, Customer retention.
UNIT IITQM PRINCIPLES9
Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee
involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward,
Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier
Partnership - Partnering, Supplier selection, Supplier Rating.
UNIT IIITQM TOOLS AND TECHNIQUES I9
The seven traditional tools of quality - New management tools - Six sigma: Concepts,
Methodology, applications to manufacturing, service sector including IT - Bench marking -
Reason to bench mark, Bench marking process - FMEA - Stages, Types.
UNIT IVTQM TOOLS AND TECHNIQUES II9
Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss
function - TPM - Concepts, improvement needs - Performance measures
UNIT VQUALITY MANAGEMENT SYSTEM9
Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific
Standards—AS 9100, TS16949 and TL 9000 ISO 9001 Requirements—Implementation—
Documentation—Internal Audits—Registration.
ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series Standards—
Concepts of ISO 14001—Requirements of ISO 14001—Benefits of EMS.
TOTAL: 45 PERIODS
COURSE OUTCOMES:
At the end of the course, learners will be able to
CO1: Explain the quality management philosophies and Framework.
CO2: Demonstrate the need of customer expectations, employee involvement and Supplier
Partnership.
CO3: Inustrate TQM tools and Techniques to improve the product and process Quality
CO4: Use the modern tools to improve quality of the product.
TEXT BOOKS:

6

- Dale H.Besterfiled, Carol B.Michna,Glen H. Besterfield,Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Revised 3rd Edition, Pearson Education Asia, Indian Reprint, 2013.
- 2. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, Cengage Learning, 2012.
- 3. Oakland J S, "TQM Text with Cases", 3rd Edition, Butterworth Heinemann Ltd., Oxford, 2012.

- Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", 1st Edition,PrenticeHall (India) Pvt. Ltd., 2006.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", 2nd Edition, Prentice Hall (India) Pvt. Ltd.,2006.
- 3. Ramachandran S, "Total Quality Management", 3rd Edition, Air Walk Publications, 2014.
- 4. ISO9001-2015 standards

	LEAN MANUFACTURING	L	Т	Р	С
21PME36		3	0	0	3
COURSE OBJI	ECTIVES:				
• To use vari	ous Lean Manufacturing tools				
• To execute	various lean tools for improving production				
• To show th	e concepts to reduce the process time				
• To implem	ent the process of Six Sigma				
• To use the	suitable Lean Tools for various cases				
UNIT I INT	RODUCTION TO LEAN MANUFACTURING				9
Conventional M	anufacturing versus Lean Manufacturing – Principles of Lean M	lanu	Ifact	urin	g –
Basic elements of	f lean manufacturing – Introduction to LM Tools.				0
UNIT II CE	LLULAR MANUFACTURING, JIT. TPM				9
Cellular Manufa	cturing – Types of Layout, Principles of Cell layout, Implem	enta	tion	. Jľ	Γ –
Principles of JI	T and Implementation of Kanban. TPM – Pillars of TPM,	Pri	ncip	les	and
implementation	of TPM.		1		
UNIT III SET	TUP TIME REDUCTION, TOM, 5S, VSM				9
Set up time redu	action – Definition, philosophies and reduction approaches. TO	M -	- Pri	inci	oles
and implementat	ion. 5S Principles and implementation - Value stream mapping -	- Pro	oced	ure	and
principles.					
UNIT IV SIX	SIGMA				9
Six Sigma – Def	inition, statistical considerations, variability reduction, design of	exp	erin	nent	s –
Six Sigma imple	mentation.	1			
UNIT V CAS	SE STUDIES				9
Various case stu	dies of implementation of lean manufacturing at industries.				
	TOTAL:	45	PER	RIO	DS
COURSE OUT	COMES:				
At the end of the	course, learners will be able to				
CO1: Apply var	ious Lean Manufacturing tools to eliminate wastes.				
CO2: Apply var	ious lean manufacturing tools for productivity improvements.				
CO3: Demonstra	ate the concepts to reduce the process time				
CO4: Apply the	process of Six Sigma in industries.				
CO5: Use the su	itable Lean Tools for the identified cases and justify				
TEXT BOOKS					
1. Ronald G.	Askin & Jeffrey B. Goldberg, "Design and Analysis of Le	an	Proc	luct	on
Systems", 1 st	Edition, John Wiley & Sons, 2003.				
2. D. Reinertse	en, "The Principles of Product Development Flow", 1 st Ec	litio	n, S	Seco	ond
Generation L	ean Product Development, Celeritas Publishing, 2009.				
3. M. Rother, J.	Shook, "Learning to See, Lean" 1 st Edition, Enterprise Institute,	200	9.		
REFERENCES	:				
1. Mikell Gr	pover, "Automation, Production Systems, and Comp	uter	-Inte	egra	ted
Manufacturin	ng", 4 th edition, Pearson, 2014.				
2. Rother M. a	and Shook J, "Learning to See: Value Stream Mapping to A	dd	Valı	ie a	ind
B.E. – MECHANICAL	158 ENGINEERING (I TO VIII SEMESTERS) BoS Chairman R	-202	1 (CI	BCS)	

Eliminate MUDA", Lean Enterprise Institute, 1st Edition, 1999.

3. J.K. Liker, "The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer", 1st Edition, McGraw Hill, 2004.

21DMF37	INDUSTRIAI SAFETV	L	Т	Р	С			
211 MIE57	INDUSTRIAL SAFETT	3	0	0	3			
COURSE OBJ	ECTIVES:							
• To apply	safety ideas to impart basic safety skills.							
• To relate	the concepts of safety analysis and its control measures.							
• To disco	ver the occupational health hazards and its risk in workplace.							
• To interp	ret the safety, Health and Environmental regulations.							
• To relate	safety management system and apply in industrial case studies.							
UNIT I OP	ERATIONAL SAFETY			9	)			
Hot metal opera	tion, boiler, pressure vessels – heat treatment shop – gas furna	ace (	oper	atio	n –			
electroplating –	hot bending pipes - safety in welding and cutting, Cold - me	tal	oper	atio	n –			
safety in machir	e shop – cold bending and chamfering of pipes metal cutting -	– sh	ot b	lasti	ng,			
grinding, paintin	g – power press and other machines. Management of toxic gases	anc	1 ch	emio	cals			
– industrial fires	and prevention – road safety – highway and urban safety – sa	fety	of	sew	age			
disposal and clea	aning – control of environmental pollution – managing emergenci	ies i	n ind	dust	ries			
– planning secu	rity and risk assessments, on – site and off site. Control of n	najo	r in	dust	rial			
hazards.		U						
UNIT II SAI	FETY APPRAISAL AND ANALYSIS			9	)			
Human side of s	afety - personal protective equipment - causes and cost of accid	ents	. Ac	cide	ents			
prevention progr	am – specific hazard control strategies – HAZOP training and c	leve	lopr	nen	t of			
employees - fir	st aid – fire fight devices – accident reporting, investigation. M	1eas	urer	nent	t of			
safety performan	nce, accident reporting and investigation - plant safety inspect	ion,	job	sat	îety			
analysis – safety	permit procedures. Product safety – plant safety rules and proc	eduı	res -	- saf	iety			
sampling – safet	y inventory systems. Determining the cost effectiveness of safety	mea	sure	emer	ıt.			
UNIT III OC	CUPATIONAL HEALTH			9	)			
Concept and spe	ectrum of health functional units and activities of operational h	ealt	h se	rvic	e –			
occupational and	d related disease - levels of prevention of diseases - notifiable	le o	ccup	oatic	mal			
diseases Toxicol	ogy Lead - Nickel, chromium and manganese toxicity - gas pois	soni	ng (	sucł	1 as			
CO, Ammonia C	Chlorise, So2, H2s.) their effects and prevention – effects of ultra	viol	et ra	diat	ion			
and infrared radi	ation on human system.							
UNIT IV SAI	FETY AND HEALTH REGULATIONS			9	)			
Safety and heal	th standards - industrial hygiene - occupational diseases prev	venti	on	welf	are			
facilities. The ob	ject of factories act 1948 with special reference to safety provisio	ns, 1	mod	el ru	ıles			
123a, history of	legislations related to safety - pressure vessel act - Indian b	oile	r ac	t –	the			
environmental p	rotection act – electricity act – explosive act.							
UNIT V SAI	FETY MANAGEMENT			9	)			
Evaluation of m	nodern safety concepts - safety management functions - safety	y or	gan	izati	on,			
safety department	nt- safety committee, safety audit - performance measurements ar	nd m	notiv	vatio	n –			
employee participation in safety - safety and productivity.								
	TOTAL:	45 ]	PER	lOI	DS			
COURSE OUT	COMES:							
At the end of the	course, learners will be able to							
	160							
B.E. – MECHANICAL	ENGINEERING (I TO VIII SEMESTERS) BoS Chairman R	-202:	1 (CE	BCS)				

- CO1: Interpret operational safety in industrial process
- CO2: Calculate safety risk by executing safety appraisal using HAZOP
- CO3: Discover the occupational health hazards presents in the workplace
- CO4: Relate the safety and health regulations in workplace
- CO5: Choose safety system to run an industry with utmost safety precautions

# **TEXT BOOKS:**

- 1. John V Grimaldi, Safety Management, Richard D. Irwin; 5th Edition, 2003
- 2. Krishnan N.V, "Safety in Industry", 1st Edition, Jaico Publisher House, 1996
- Deshmukh L M , "Industrial Safety Management", 2nd Edition, McGraw Hill Education India, 2017

- John.V .Grimaldi and Rollin. H Simonds, "Safety Management", 1st Edition, All India traveller book seller, New Delhi – 1989
- 2. Singh, U.K and Dewan, J.M., "Safety, Security and Risk Management", 1st Edition, APH publishing company, New Delhi, 1996
- 3. Occupational Safety Manual, NIOSH, 1985

21PME38	INDUSTRY 4.0	L	Т	Р	С
		3	0	0	3
COURSE OBJ	ECTIVES:				
To interp	ret the basic concepts of Industry 4.0				
• To relate	the concepts of evolution of Industry 4.0				
• To constr	ruct the concepts of IIOT				
• 10 disco	ver the real time application of industry 4.0				
• 10 prepa	PODUCTION TO INDUSTRY 4.0				0
The Various In	dustrial Revolutions - Digitalisation and the Networked Econo	mv	- D	rive	rc
Enablers Com	belling Forces and Challenges for Industry $4.0$ - The Io	urne	- D	n f	ar.
Developments in	USA Europe China and other countries - Comparison of Indus	trv <i>4</i>	,, 10F	acto	orv
and Today's Fac	tory - Trends of Industrial Big Data and Predictive Analytics for S	li y ¬ Smai	rt Ru	isina	лу ess
Transformation	ory Trends of Industrial Dig Data and Tredictive Analytics for C	/111a		.5111	200
Transformation.					
UNIT II RO	AD TO INDUSTRY 4.0			9	)
Internet of Thing	gs (IoT) & Industrial Internet of Things (IIoT) & Internet of Service	ces -	· Sm	art	
Manufacturing ·	Smart Devices and Products - Smart Logistics - Smart Citi	es -	Pre	dict	tive
Analytics					
UNIT III IIO	Т			9	9
Fourth Revoluti	on – Sustainability assessment of Manufacturing Industry – L	ean	Proc	luct	ion
system – Smart	and connected business perspective - smart factories - cyber-phy	rsica	l sys	tem	1s —
collaboration pla	tform and PLM				
UNIT IV AP	PLICATIONS			ļ	9
Inventory Manag	gement and Quality Control – Plant security and safety – Facility	man	ager	nen	t –
oil, chemical and	l Pharmaceutical Industry – Milk processing and packaging indus	tries			
UNIT V BUS	SINESS ISSUES IN INDUSTRY 4.0			ļ	9
Opportunities an	d Challenges - Future of Works and Skills for Workers in the Ind	ustr	y 4.0	Era	a —
Strategies for co	mpeting in an Industry 4.0 world				
	TOTAL:	45 ]	PER	IO	DS
COURSE OUT	COMES:				
At the end of the	course, learners will be able to				
CO1: Show the l	basic concents of Industry 4.0				
CO2: Interpret u	Concepts of Industrial IOT in various sectors				
CO4: Demonstra	the applications of Industrial IOT				
CO5: Solve the	Business issues in Industry 4.0				
<b>TEXT BOOKS</b>	•				
	162				

- 1. The Fourth Industrial Revolution^{||} by Klaus Schwab, World Economic Forum 2nd Edition
- 2. Arsheep Bahga and Vijay Madisetti, "Internet of Things: A Hands-On Approach", 8th Edition, University Press.
- 3. NOC: "Introduction to Industry 4.0 and Industrial Internet of Things" 3rd Edition

- 1. Jean-Claude André, "Industry 4.0", 3rd Edition, Wiley- ISTE, 2019.
- Diego Galar Pascual, Pasquale Daponte, Uday Kumar, "Handbook of Industry 4.0 and SMART Systems", 2nd Edition, Taylor and Francis, 2020.
- Miller M, "The internet of things: How smart TVs, smart cars, smart homes, and smart cities are changing the world", 3rd Edition, Pearson Education, 2015.

21PMF30	PROFESSIONAL ETHICS	L	Т	P	С	
211 111237		3	0	0	3	
COURSE OBJ	ECTIVES:					
• To apply	the importance of Human Values.					
To relate	the various theories related to ethical behaviour.					
• To illust	rate various role and responsibility in technological developmen	t thro	ough	1		
experim	entation.					
• To expla	in the functions of professionals rights.					
• To demo	nstrate the practices in Global Issues.				<u> </u>	
UNITI H	UMAN VALUES				<b>y</b>	
for others Liv	and Ethics – Integrity – work ethic – Service learning – Civic	virtu Mali	e – .	Kes]	peci	
Cooperation	Commitment Empethy Self confidence Character	v alt	nng Linita	um alit	e –	
Looperation -	Communent – Empany – Sen-commune – Character –	- sp	ont.	lant	у —	
		geme	ent.		<u> </u>	
	GINEERING ETHICS	1	1'1	_	9	
Senses of Engi	neering Ethics – variety of moral issues – Types of inquiry – Mo	oral	dilei	nma	ıs –	
Moral Autonom	y – Koniberg's theory – Gilligan's theory – Consensus and		ntro	vers	y —	
Religion Uses	essional roles – Theories about right action – Self-Interest -	- Cl	istoi	ns	and	
Religion – Uses	of Ethical Theories.				<u> </u>	
	GINEERING AS SOCIAL EXPERIMENTATION	1			)	
A Balanced Out	Experimentation – Engineers as responsible Experimenters – Coc look on Law.	ies o	I EU	nics	_	
UNIT IV SA	FETY, RESPONSIBILITIES AND RIGHTS			9	)	
Safety and Risk	$- \mbox{ Assessment of Safety and Risk} - \mbox{ Risk}$ Benefit Analysis and F	Redu	cing	Ris	k –	
Respect for Au	thority - Collective Bargaining - Confidentiality - Conflict	s of	Int	eres	t –	
Occupational C	rime – Professional Rights – Employee Rights – Intellectual	Prop	erty	Rig	ghts	
(IPR) – Discrim	ination.					
UNIT V GL	OBAL ISSUES				)	
Multinational C	orporations – Environmental Ethics – Computer Ethics – Weapo	ns				
Development - I and Advisors - N	Engineers as Managers – Consulting Engineers – Engineers as E Moral Leadership –Code of Conduct – Corporate Social Responsi	xper ibilit	t Wi y.	itnes	sses	
	TOTAL	: 45 ]	PER	RIO	DS	
COURSE OUT	COMES:					
At the end of the	e course, learners will be able to					
CO1: Apply the	foundational knowledge in Human Values.					
CO2: Relate the	various Engineering Ethics.					
CO3: Illustrate	various Engineering as Social Experimentation.					
CO4: Interpret th	e functions of Safety, Responsibilities and Rights.					
CO5: Apply the knowledge of human values and social values to contemporary ethical values and glob						
1ssues.	•					
	•					
	10					

U

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", 4th Edition, Tata McGraw Hill, New Delhi, 2017.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", 1st Edition, Prentice Hall of India, New Delhi, 2004.
- 3. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", 1st Edition, Oxford University Press, Oxford, 2001.

- 1. Charles B. Fleddermann, "Engineering Ethics", 2nd Edition, Pearson Prentice Hall, New Jersey, 2004.
- 2. John R Boatright, "Ethics and the Conduct of Business", 1st Edition, Pearson Education, New Delhi, 2003.
- Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility", 1st Edition, Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013

21PME40	ENTREPRENEURSHIP DEVELOPMENT	L	Т	Р	С	
		3	0	0	3	
COURSE OBJECTIVES:						
To deve	lop basic entrepreneurial skills.					
• To dem	onstrate strengthen entrepreneurial motivation					
• To illus	trate the business efficiently and effectively					
• To relat	e financing and accounting					
<ul> <li>To supp</li> </ul>	ort the entrepreneurs policy					
UNIT I EN	NTREPRENEURSHIP			9		
Entrepreneur –	Types of Entrepreneurs – Difference between Entrepreneur and H	Entrepre	neur			
Entrepreneursh	ip in Economic Growth, Factors Affecting Entrepreneurial Growt	th				
UNIT II M	OTIVATION			9		
Major Motives	Influencing an Entrepreneur – Achievement Motivation T	raining,	Self	-Rati	ng,	
Business Game	s, Thematic Apperception Test – Stress Management, Entreprene	urship I	Develo	opme	nt	
Programs – Nee	ed, Objectives.			0		
UNIT III BU	JOINEDD	aturas	Droio	<u>9</u>		
Sman Enterpris	es – Deminition, Classification – Characteristics, Ownership Struc	$\nabla a = d D$	Floje			
Formulation – S	Steps involved in setting up a Business – identifying, selecting a C	2000 BI	isines	s 	c	
opportunity, Ma	arket Survey and Research, Techno Economic Feasibility Assessi	ment - I	repar	ation	OI	
Preliminary Pro	oject Reports – Project Appraisal – Sources of Information – Clas	sificatio	on of N	veeds	3	
and Agencies						
UNIT IV FI	NANCING AND ACCOUNTING			9		
Need – Sources	of Finance, Term Loans, Capital Structure, Financial Institution,	, Manag	ement	of		
working Capita	l, Costing, Break Even Analysis, Taxation – Income Tax, Excise	Duty –	Sales	$\frac{\text{Tax.}}{2}$		
UNIT V SU	JPPORT TO ENTREPRENEURS	<b>.</b>	- M	9		
Sickness in sma	all Business – Concept, Magnitude, Causes and Consequences, Co		e Mea	sures	\$ 11	
- Business Incu	bators – Government Policy for Small Scale Enterprises – Growt	n Strate	gies ir	i sma	111	
industry – Expa	insion, Diversification, Joint Venture, Merger and Sub Contractin	lg				
COURCE OUT		)TAL: 4	45 PE	RIO	DS	
<b>COURSE OU</b>	ICOMES:					
CO1: Explain	the entrepreneurial skills and factors					
CO1. Explain	the need of motivation for Entrepreneur					
CO2: Inustrate	the requirement to run the business efficiently and effectively					
CO4: Estimate	the sources of Finance and Loan					
CO5: Express	to support the entrepreneurs policy					
TEXT BOOK	support the endepreneurs poney					
1 Khanka	SS "Entrepreneurial Development" S Chand & Co. I td. Ram	Nagar	New I	Delhi	i	
2 Donald	F Kuratko "Entrepreneurship – Theory Process and Practice" 9	th Editic	n Cei	ngag	د، م	
2. Donald 3. Hisrich	<b>R D</b> Peters M P "Entrepreneurship" 2 th Edition Tota McCrow L		3 3	igag	0	
J. TISICI	$\mathbf{C}$ .	, 201	Ј.			
1 Mathews	o. I Manimala "Entrepreneurship theory at cross roads: paradi	ame an	d pro	vis"	2 nd	
Fdition	Dream tech 2005	gins an	u pia	A13	4	
Eunion,						
	166					

BoS Chairman

- 2. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.
- 3. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

21PME4	41	<b>OPERATIONS RESEARCH</b>	L	T	P	C
~ ~ ~ ~ ~ ~ ~ ~ ~					0	3
COURSE	OBJ	ECTIVES:				
• To	solve	Linear Programming techniques.				
• 10	solve	about the transportation models and network models				
• 10 • To	solve	about Assignment models and inventory control				
• 10 • To	solve	Game theory problems and queuing models				
• 10		NCEPTS OF OPERATIONS RESEARCH AND LINEAR				
UNIT I	PR	OGRAMMING TECHNIQUES				9
Operations	resea	rch and decision making, types of mathematical models and the	ir co	onstr	ucti	on;
Formulatio	n of	linear programming problem, applications and limitations: Gra	phic	cal n	neth	ıod,
Simplex m	ethod	, Big–M method, Two–phase method.	1			,
UNIT II	TR	ANSPORTATION MODELS AND NETWORK MODELS				9
Least cost	metho	d, North West corner rule, Vogel's approximation method, Modi	fied		1	
distributior	n met	hod optimization models, degeneracy in transportation model, u	unba	lanc	ed	and
maximizati	ion m	odels.				
UNIT III	ASS	SIGNMENT MODELS AND INVENTORY CONTROL			9	9
Assignmen	t mod	lels: Hungarian algorithm, unbalanced assignment problems, ma	ximi	zati	on c	ase
in assignm	ent p	roblems, traveling salesman problem. Inventory models with pe	enalt	y, sl	nort	age
and quantit	ty dise	count, safety stock, inventory models with probability, lead time,	, der	nanc	l, m	ulti
item detern	ninist	ic model.				
UNIT IV	PR	DJECT MANAGEMENT BY CPM AND PERT				9
Construction	ng pro	ject network, network computations in CPM and PERT, cost cra	shir	ng, re	esou	irce
levelling.						
UNIT V	GA	ME THEORYAND QUEUING MODELS				9
Game theo	ry: Tl	neory of games, competitive games, rules for game theory, mixed	l stra	ategi	es, 1	two
person zer	o sun	n game, n person zero sum game, graphical method. ; Queuin	ng m	ode	ls: 7	Гhe
M/M/1 que	eue, T	he M/M/m queue, batch arrival queuing system, queues with brea	kdo	wns		
		TOTAL:	45 ]	PER	IO	DS
COURSE	OUT	COMES:				
At the end	of the	course, learners will be able to				
	nstruc	The LPP and solve by Graphical method				
CO2: Sol	ve the	A reference of a large state of the large state of				
CO3: SOI	ve the	Assignment and Inventory models				
CO4: Coi	nstruc	t the project network using CPM and PERT				
COS: Sol	ve by	using Game theory and Queuing models				
TEXT BO	OKS	ibeharman "Operations Descarely" 2rd Edition Holder Dev 200	5			
1. Hillier		Operations Descently, $f^{th}$ Edition, Branking Hell of Latin 2002	S			
2. Tulsian and Dasday V. "Ougetitative Techniques" 4 th Edition Descare Act. 2002						
5. I UISIAN		rasdey v., Quantitative rechniques, 4 Edition, Pearson Asia, .	2002	2.		
KEFEKEI	NCES	:				

6

- 1. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", 4th Edition, John Wiley, 2009.
- 2. Budnick F.S., "Principles of Operations Research for Management", 3rd Edition, Richard D Irwin, 1990.
- Philip D.T. and Ravindran A., "Operations Research", 2nd Edition, John Wiley, 1992.
   Shennoy G.V. and Srivastava U.K., "Operation Research for Management", 4th Edition, Wiley Eastern, 1994.