

COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI – 625009. (Autonomous)

(Accredited by NAAC with 'A' Grade and by NBA for 5 UG Programmes) (Approved by AICTE and affiliated to Anna University, Chennai)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

B.Tech. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

CURRICULUM and SYLLABUS (I to VIII SEMESTER)

GOLDEN GOALS OF VET

- 1. Regularity & Punctuality.
- 2. Nil Failures, High Subject Average & More Centums.
- 3. Research & Development.
- 4. Focus in General Knowledge & Depth in the Subject.
- 5. Communication Skills (Spoken English & Learning more Languages).
- 6. Extracurricular Activities & Co-Curricular Activities (All-around Development).
- 7. Good Health and Food Habits.
- 8. HumanValues.

VISION AND MISSION OF THE INSTITUTE

VISION OF VCET

To emerge and sustain as a center of excellence for technical and managerial education upholding social values.

MISSION OF VCET

Our aspirants are

- Imparted with comprehensive, innovative and value based education.
- Exposed to technical, managerial and soft skill resources with emphasis on research and professionalism.
- Inculcated with the need for a disciplined, happy, married and peaceful life.

VISION AND MISSION OF AI & DS DEPARTMENT

VISION

To emerge and sustain as academic excellence in Artificial Intelligence and Data Science to produce ethical professionals through innovative research and education.

MISSION

- To promote industry ready graduates by acquiring intelligent data analytical skills.
- To empower the graduates towards research and application-oriented knowledge for higher studies.
- To equip the graduates with entrepreneurship skills to serve the needs of society.

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI-625009

(Autonomous) B.Tech.- ARTIFICIAL INTELLIGENCE AND DATA SCIENCE CHOICE BASED CREDIT SYSTEM REGULATIONS - 2021 BATCH: 2023 - 2027 & 2024 - 2028 CURRICULUM FOR SEMESTERS I TO VIII SEMESTER – I

SI. No.	COURSE CODE	COURSE TITLE	Category	L	т	Ρ	С
1.	21IP101	Induction Programme (Common to all B.E./B.Tech. Programmes)	-	0	0	0	0
		THEORY					
2.	21EN101	Professional English – I (Common to all B.E./B.Tech. Programmes)	HS	3	2	0	4
3.	21MA101	Matrices and Calculus (Common to all B.E./B.Tech. Programmes)	BS	3	2	0	4
4.	21PH101	Engineering Physics (Common to all B.E./B.Tech. Programmes)	BS	3	0	0	3
5.	21CH101	Engineering Chemistry (Common to all B.E./B.Tech. Programmes)	BS	3	0	0	3
6.	21CS101	Problem Solving and Python Programming. (Common to all B.E./B.Tech. Programmes)	ES	3	0	0	3
7.	21TA101	தமிழர் மரபு /Heritage of Tamils	HS	1	0	0	1
		PRACTICAL COURSES					
8.	21CS102	Problem Solving and Python Programming Laboratory (Common to all B.E./B.Tech. Programmes)	ES	0	0	4	2
9.	21PC101	Physics and Chemistry Laboratory (Common to all B.E./B.Tech. Programmes)	BS	0	0	4	2
		Total Credits					22

i

SEMESTER-II

SI. No.	COURSE CODE	COURSE TITLE	Category	L	Т	Ρ	С	
		THEORY						
1.	21EN102	English – II (Common to all B.E./B.Tech. Programmes)	HS	3	0	0	3	
2.	21MA103	Sampling Techniques and Numerical Methods (Common to B.E. CSE/B.Tech. Programmes /B.E.ECE)	ig Techniques and Numerical Methods on to B.E. CSE/B.Tech. Programmes BS EE)					
3.	21PH103	Physics for Information Science (Common to B.E. CSE/B.Tech. Programmes)	BS	3	0	0	3	
4.	21ME101	Engineering Graphics (Common to all B.E./B.Tech. Programmes)	ES	2	0	2	3	
5.	21EE104	Sasic Electrical and Electronics Engineering or Information ScienceESCommon to B.E. CSE/B.Tech. Programmes)				0	3	
6.	21AD101	Programming Paradigm in C	PC	3	0	0	3	
7.	21CH103	Environmental Science (Common to all B.E./B.Tech. Programmes)	BS	2	0	0	2	
8.	21TA102	தமிழரும் தொழில்நுட்பமும் /Tamils and Technology	HS	1	0	0	1	
PRACTICAL COURSES								
9.	21EM101	Engineering Practices Laboratory (Common to all B.E./B.Tech. Programmes)	ES	0	0	4	2	
10.	21AD102	Programming Paradigm in C Laboratory	PC	0 0 4			2	
		Total Credits					26	

ii

SEMESTER- III

SI. No.	COURSE CODE	COURSE TITLE	Category	L	т	Ρ	С
		THEORY					
1.	21MA203	Discrete Mathematics (Common to B.E.CSE/B.Tech. Programmes)	BS	3	2	0	4
2.	21AD201	Operating System Principles	PC	3	0	0	3
3.	21AD203	Data Structure Design using Python	PC	3	0	0	3
4.	21AD205	Principles of Artificial Intelligence	PC	3	0	0	3
	1	THEORY WITH PRACTICAL COURS	SE				
5.	21AD206	Software Engineering Principles and Design	PC	2	0	2	3
		PRACTICAL COURSES					
6.	21AD202	Operating System Principles Laboratory	PC	0	0	4	2
7.	21AD204	Data Structure Design using Python Laboratory	PC	0	0	4	2
		Total Credits					20

SEMESTER-IV

SI.	COURSE		Category		т	D	C
No.	CODE	COURSE TITLE		-	•	F	C
		THEORY					
1.	21MA208	Probability and Statistics (Common to B.E.CSE/B.Tech. Programmes)	BS	3	2	0	4
2.	21AD207	Analysis of Algorithms	PC	3	0	0	3
3.	21AD208	Database Design and Engineering	PC	3	0	0	3
4.	21AD210	Computer Networking Principles	PC	3	0	0	3
5.	21AD212	Principles of Machine Learning	PC	3	0	0	3
		PRACTICAL COURSES					
6.	21AD209	Database Design and Engineering Laboratory	PC	0	0	4	2
7.	21AD211	Computer Networking Principles Laboratory	PC	0	0	4	2
8.	21AD213	Machine Learning Laboratory	PC	0	0	4	2
		Total Credits			_		22

B.Tech. AI & DS (I TO VIII SEMESTERS) (2023-2027) iii

SI.	COURSE		Category	I	т	Р	C
No.	CODE	COURSE TITLE	outogoly		•	•	•
		THEORY					
1.	21AD301	Deep Learning Techniques	PC	3	0	0	3
2.	21AD302	Data Science and Analytics	PC	3	0	0	3
3.	21AD304	Full Stack Development	PC	3	0	0	3
4.	21PADXX	Professional Elective I	PE	3	0	0	3
5.	21PADXX	Professional Elective II	PE	3	0	0	3
6.	21MCC01	Constitution of India	MC	1	0	0	0
7.		Internship**	EE	0	0	0	1
		PRACTICAL COURSES					
8.	21AD303	Data Science and Analytics Laboratory	PC	0	0	4	2
9.	21AD305	Full Stack Development Laboratory	PC	0	0	4	2
10.	21EN301	Professional Communication Laboratory (Common to all B.E./B.Tech. Programmes)	HS	0	0	2	1
		Total Credits					21

SEMESTER-V

iv

SI.	COURSE		Category		т	Р	C
No.	CODE	COURSE TITLE		-	•	•	•
		THEORY					
1.	21AD306	Natural Language Processing	PC	3	0	0	3
2.	21PADXX	Professional Elective III	PE	3	0	0	3
3.	21PADXX	Professional Elective IV	PE	3	0	0	3
4.	21XXXXX	Open Elective – I	OE	3	0	0	3
5.	21XXXXX	Open Elective – II	OE	3	0	0	3
6.	21MCC02	Essence of Indian Traditional Knowledge	MC	1	0	0	0
7.	210CADXX	One Credit Course	EE	0	0	2	1
		THEORY WITH PRACTICAL COURSE					
8.	21AD308	Computer Vision	PC	2	0	2	3
		PRACTICAL COURSES					
9.	21AD307	Natural Language Processing Laboratory	PC	0	0	4	2
		Total Credits					21

SEMESTER- VI

SEMESTER- VII

SI. No.	COURSE CODE	COURSE TITLE	Category	L	т	Р	С
		THEORY					
1.	21AD401	Data Visualization	PC	3	0	0	3
2.	21XXXXX	Open Elective – III	OE	3	0	0	3
3.	21XXXXX	Open Elective – IV	OE	3	0	0	3
		PRACTICAL COURSES					
4.	21AD402	Data Visualization Laboratory	PC	0	0	4	2
5.	21AD403	Project Work 1	EE	0	0	4	2
		Total Credits					13

v

SEMESTER- VIII

SI. No.	COURSE CODE	COURSE TITLE	Category	L	т	Ρ	С		
		THEORY							
1.	21PADXX	Professional Elective – V	PE	3	0	0	3		
2.	21PADXX	Professional Elective – VI	PE	3	0	0	3		
PRACTICAL COURSE									
3	21AD404	Project Work-II	EE	0	0	20	10		
		Total Credits	•				16		

**Industrial training for a period of minimum 2 weeks during the summer / winter vacation Total Credits: 161

SEME	ESTERW	ISE	CRE	DIT	DIS	TRIB	UT	ION

Sem./Cat.	ISEM	II SEM	III SEM	IV SEM	V SEM	VI SEM	VII SEM	VIII SEM	Total Credits
HS	5	4	-	-	1	-	-	-	10
BS	12	9	4	4	-	-	-	-	29
ES	5	8	-	-	-	-	-	-	13
PC	-	5	16	18	13	8	5	-	65
PE	-	-	-	-	6	6	-	6	18
OE	-	-	-	-	-	6	6	-	12
EE	-	-	-	-	1	1	2	10	14
Total	22	26	20	22	21	21	13	16	161

SI.		Topic
No.	Category	Торіс
1.	HS	Humanities and Social Sciences including Management (HS)
2.	BS	Basic Sciences (BS)
3.	ES	Engineering Sciences including Workshop, Drawing, Basics of Civil / Electrical / Mechanical / Computer etc. (ES)
4.	PC	Professional Core Courses (PC)
5.	PE	Professional Electives: Courses relevant to chosen specialization / branch (PE)
6.	OE	Open Electives: Electives from other Technical and / or emerging Courses (OE)
7.	EE	Project Work, Seminar and Internship in Industry – Employability Enhancement Courses (EE)

vi

B.Tech. AI & DS (I TO VIII SEMESTERS) (2023-2027)

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: COMPUTATIONAL INTELLIGENCE

SI. No.	COURSE CODE	COURSE TITLE	Category	L	т	Р	С
1.	21PAD01	Cognitive Computing	PE	3	0	0	3
2.	21PAD02	Recommender System	PE	3	0	0	3
3.	21PAD03	Distributed computing	PE	3	0	0	3
4.	21PAD04	Quantum Computing	PE	3	0	0	3
5.	21PAD05	Cloud Computing	PE	3	0	0	3
6.	21PAD06	Soft Computing Essentials	PE	3	0	0	3
7.	21PAD07	Generative AI	PE	3	0	0	3
8.	21PAD08	Fog Computing	PE	3	0	0	3

VERTICAL 2: CYBER INTELLIGENCE

SI. No.	COURSE CODE	COURSE TITLE	Category	L	т	Ρ	С
1.	21PAD17	Cyber Threat Analytics	PE	3	0	0	3
2.	21PAD18	IoT Security	PE	3	0	0	3
3.	21PAD19	Malware Analysis	PE	3	0	0	3
4.	21PAD20	Steganalysis	PE	3	0	0	3
5.	21PAD21	Biometric Security	PE	3	0	0	3
6.	21PAD22	Block Chain and Cryptocurrency	PE	3	0	0	3
7.	21PAD23	Information Security Management	PE	3	0	0	3
8.	21PAD24	Digital Forensics	PE	3	0	0	3

B.Tech. AI & DS (I TO VIII SEMESTERS) (2023-2027) **BoS Chairman**

vii

VERTICAL 3: ANALYTICAL INTELLIGENCE

SI. No.	COURSE CODE	COURSE TITLE	Category	L	Т	Р	С
1.	21PAD25	Business Analytics	PE	3	0	0	3
2.	21PAD26	Predictive Analytics	PE	3	0	0	3
3.	21PAD27	Big Data Analytics	PE	3	0	0	3
4.	21PAD28	IoT Domain Analytics	PE	3	0	0	3
5.	21PAD29	Analytics in Cloud Computing	PE	3	0	0	3
6.	21PAD30	Multivariate Data Analysis	PE	3	0	0	3
7.	21PAD31	Geospatial Data Analysis	PE	3	0	0	3
8.	21PAD32	Time Series Analysis and Forecasting	PE	3	0	0	3

VERTICAL 4: COMPUTATIONAL THINKING FOR AI DESIGN

SI. No.	COURSE CODE	COURSE TITLE	Category	L	Т	Ρ	С
1.	21PAD33	Robotics Process Automation	PE	3	0	0	3
2.	21PAD34	Reinforcement Learning	PE	3	0	0	3
3.	21PAD35	Foundations of Game Design and Development	PE	3	0	0	3
4.	21PAD36	Human Computer Interaction	PE	3	0	0	3
5.	21PAD37	GPU Architecture and Programming	PE	3	0	0	3
6.	21PAD38	Web and Social Media Analytics	PE	3	0	0	3
7.	21PAD39	AI in Finance	PE	3	0	0	3
8.	21PAD40	Artificial Neural Networks and Its Applications	PE	3	0	0	3

B.Tech. AI & DS (I TO VIII SEMESTERS) (2023-2027) **BoS Chairman**

viii

VERTICAL 5: FULL STACK DEVELOPMENT & AI TOOLS

SI. No.	COURSE CODE	COURSE TITLE	Category	L	т	Р	С
1.	21PAD41	Video Creation and Editing	PE	3	0	0	3
2.	21PAD42	Essentials of UI and UX Design	PE	3	0	0	3
3.	21PAD43	Digital Marketing	PE	3	0	0	3
4.	21PAD44	Visual Effects	PE	3	0	0	3
5.	21PAD45	App Development	PE	3	0	0	3
6.	21PAD46	DevOps	PE	3	0	0	3
7.	21PAD47	Open Source Technologies	PE	3	0	0	3
8.	21PAD48	Enterprise Application Development	PE	3	0	0	3

OPEN ELECTIVES (OE) FOR EEE, CIVIL AND MECH (CUTTING EDGE TECHNOLOGIES)

SI. No.	COURSE CODE	COURSE TITLE	Category	L	Т	Ρ	с
1	210AD01	Artificial Intelligence and Machine Learning Fundamentals	OE	2	0	2	3
2	210AD02	IoT Concepts and Applications	OE	2	0	2	3
3	210AD03	Data Science Fundamentals	OE	2	0	2	3
4	210AD04	Augmented Reality / Virtual Reality	OE	2	0	2	3

ONE CREDIT COURSES

SI.No.	COURSE CODE	COURSETITLE	Category	L	т	Ρ	С
1.	210CAD01	Practical Machine Learning with Tensor Flow	EE	0	0	2	1
2.	210CAD02	Practical Tableau	EE	0	0	2	1
3.	210CAD03	Mastering Power BI	EE	0	0	2	1
4	210CAD04	Introduction to Innovative Projects	EE	0	0	2	1

ix

B.Tech. AI & DS (I TO VIII SEMESTERS) (2023-2027) **BoS Chairman**

R-2021(CBCS)

B.Tech. AI & DS (I TO VIII SEMESTERS) (2023-2027) **BoS Chairman**

R-2021(CBCS)

х

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE SEMESTER - I

21IP10	INDUCTION PROGRAMME	L	Т	Ρ	С		
	(Common to all B.E./B.Tech Programmes)	0	0	0	0		
PRE-REQUISTIE: Ability to understand the high frequency every day or job-related language and write simple connected text on topics which re familiar or of personal interest.							
OBJEC	IVES:						
• Th ou	is course aims at making students comfortable to the new environment an clook, and to create a desire to work for national needs and beyond.	nd c	reate	a h	olistic		
institutio been int	This is a mandatory 2-week programme to be conducted as soon as the n. Normal classes start only after the induction program is over. The induction oduced by AICTE with the following objective:	stuc	dents progra	s ente amm	er the e has		
admissic student broad ur by which being. B	"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have a broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."						
allow the excellen And stud	"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers And students, give a broader view of life, and build character. "						
Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.							
engageo	The following are the activities under the induction program in which the stathroughout the day for the entire duration of the program.	uden	it wo	uld b	e fully		
(i) F	hysical Activity his would involve a daily routine of physical activity with games and sports, yo	iga, g	garde	ening	ı, etc.		

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it every day for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, make decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and don'ts,

but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) **Proficiency Modules**

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the underprivileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT

Students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their Knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity-based programme and therefore there shall be no tests / Assessments during this programme.

REFERENCES:

Guide to Induction program from AICTE

		_		_	-
21EN101	PROFESSIONAL ENGLISH-1	L	T	P	C
0000000	(Common to all B.E./B.TECH. Programmes)	3	2	0	4
COURSEO	BJECTIVES:				
• Tod	levelop learner's skills in listening and responding effectively				
• To a	pply basic grammar for better communication				
• To e	mploy reading passages for understanding vocabulary				
• To c	onstruct logical sentences and participate in pair presentation, extempt	ore			
• To o	organize ideas for various compositions in writing				
UNIT I	INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION				15
Listening	Listening for general information - Specific details - Conversation: Intro	oducti	on to c	classn	nates
- Audio / vie	deo (formal & informal); Telephone conversation; Listening to voicemail	& mes	sages	s; Liste	ening
and filling a	a form; Speaking - Self Introduction; Introducing a friend; Conversation	- Polit	eness	strate	gies;
Telephone	conversation; Leave a voicemail; Leave a message with anothe	er pe	rson;	asking	g for
informatior	n to fill details in a form; Reading - Reading brochures (technica	al cor	ntext),	telep	hone
messages	/ social media messages relevant to technical contexts and emails; Wr	iting	- Writi	ng em	ails /
letters intro	oducing oneself; Grammar - Present Tense (simple, continuous); Ques	stion t	pes: \	Nh/ Y	es or
No/ and Ta	ags Vocabulary - Synonyms; One word substitution; Abbreviations &	Acror	nyms (as us	ed in
technical c	ontexts)		,		
	NARRATION AND SUMMATION				15
<u> </u>					
Listening -	Listening to podcast, anecdotes / stories / event narration; documenta	ries a	nd inte	erview	's with
celebrities;	Speaking - Narrating personal experiences / events; Interviewing a ce	elebrit	y; Rep	orting	/ and
summarizin	g of documentaries / podcasts/ interviews; Reading - Reading bio	ograpl	nies, t	ravelo	ogues,
newspaper	reports, Excerpts from literature, and travel & technical blogs; Write	ting -	Guid	ed wr	iting -
Paragraph	writing Short Report on an event (field trip etc.); Grammar - Past tens	e (Sir	nple, c	contin	uous);
Subject-Ver	b Agreement; and Prepositions; Vocabulary - Word forms (prefixes& s	uffixe	s); Syr	nonym	ns and
Antonyms. I	Phrasal verbs.				
UNIT III	DESCRIPTION OF A PROCESS / PRODUCT				15
Listening -	Listen to a product and process descriptions; a classroom lecture; and	d adv	ertiser	nents	about
a products;	Speaking - Picture description; Giving instruction to use the product; Pr	resent	ing a p	oroduc	ct; and
Summarizin	g a lecture; Reading - Reading advertisements, gadget reviews; us	ser m	anuals	s; Wri	ting -
Writing defi	nitions; instructions; and Product /Process description; Grammar - I	mpera	atives;	Adje	ctives;
Degrees of	comparison; Present & Past Perfect, Present and past perfect continuo	us te	nses; V	Vocat	oulary
- Compound	d Nouns, Homonyms; and Homophones, discourse markers (connectiv	es & s	seque	nce w	ords)
UNIT IV	CLASSIFICATION AND RECOMMENDATIONS				15
Listening -	Listening to TED Talks: Scientific lectures: and educational videos:	Sneak	ina -	Smal	l Talk [,]
Mini nresen	tations and making recommendations. Reading - Newspaper articles		rnal re	norte	- Non
Verhal Com	munication (tables nie charts etc.) Writing - Note-making / Note-tak	, 550 (ina (*	Study	skille	to he
taught not	tested): Writing recommendations: Transferring information from non v	/erhal	(charl	nrar	h etc
to verhal n	node) Grammar - Articles: Pronouns - Possessive & Relative pro	onour		, grap cahu	larv -
Collocations	s: Fixed / Semi fixed expressions	onour	io, v u	Jubu	
UNIT V	EXPRESSIONS				15

Listening - Listening to debates/ discussions; different viewpoints on an issue; and panel discussions; Speaking - Group discussions, Debates, and Expressing opinions through Simulations & Role-play; Reading - Reading editorials; and Opinion Blogs; Writing - Essay Writing (Descriptive or narrative); Grammar - Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences; Vocabulary - Cause & Effect Expressions - Content vs. Function words.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to:

- **CO1:** Listen and comprehend complex academic texts
- **CO2:** Read and infer the denotative and connotative meanings of technical texts
- CO3: Write definitions, descriptions, narrations and essays on various topics
- **CO4:** Speak fluently and accurately in formal and informal communicative contexts
- **CO5:** Express their opinions effectively in both oral and written medium of communication

TEXT BOOKS:

- 1. Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University. English for Science & Technology. Cambridge University Press, 2021
- 2. Board of Editors, Department of English, Anna University. English for Engineers & Technologists. Orient Blackswan Private Ltd, 2020.
- 3. Board of Editors, Department of English, Anna University. Using English Orient Blackswan Private Ltd, 2017

REFERENCES:

- 1. Meenakshi Raman & Sangeeta Sharma. Technical Communication Principles and Practices Oxford University Press, New Delhi, 2016
- 2. Lakshminarayanan K.R. A Course Book on Technical English. SciTech Publications (India) Pvt. Ltd., 2012
- 3. Ayesha Viswamohan. English For Technical Communication (With CD). McGraw Hill Education, ISBN: 0070264244. 2008.
- 4. Kulbhusan Kumar, RS Salaria, Effective Communication Skill. Khanna Publishing House. First Edition, 2018.
- 5. Dr. V. Chellammal. Learning to Communicate. Allied Publishing House, New Delhi, 2003.

21MA101	MATRICES AND CALCULUS	L	Т	Ρ	С
2101	(Common to all B.E. / B.Tech. Programmes)	3	2	0	4
COURSE	OBJECTIVES:				
The main o	objectives of this course are:				
 To app To To en(To To 	develop the use of matrix algebra techniques that is needed by er olications. familiarize the students with differential calculus. make the students to apply functions of several variables technique to so gineering branches. make the students understand various techniques of integration. prepare the student to use mathematical tools in evaluating multiple plications.	ngine Ive p e int	ers for roblem egrals	r prac ns in n and	ctical nany their
UNIT I	MATRICES				12
Eigenvalue Eigenvecto Reduction – Applicati	Example 2 and Eigenvectors of a real matrix – Characteristic equation – Properties ors – Cayley - Hamilton theorem – Diagonalization of matrices by orthog of a quadratic form to canonical form by orthogonal transformation – Nations: Stretching of an elastic membrane.	es of onal ure o	Eigenv transfo f quadi	alues ormati atic fo	and on – orms
UNIT II	DIFFERENTIAL CALCULUS				12
Represent product, qr and Minim	ation of functions - Limit of a function - Continuity - Derivatives - Differuntient, chain rules) - Implicit differentiation - Logarithmic differentiation - a of functions of one variable.	rentia Appl	ation ru ication	iles (: s: Ma	sum, xima
UNIT III	FUNCTIONS OF SEVERAL VARIABLES				12
Partial diff variables - variables - undetermin	erentiation – Homogeneous functions and Euler's theorem – Total de - Jacobians – Partial differentiation of implicit functions – Taylor's serie - Applications: Maxima and minima of functions of two variables and L ned multipliers.	rivati s for .agra	ve – (functio nge's i	Chang ons of metho	je of two od of
UNIT IV	INTEGRAL CALCULUS				12
Definite au Trigonome Integration moments a	nd Indefinite integrals - Substitution rule - Techniques of Integration: etric integrals, Trigonometric substitutions, Integration of rational function of irrational functions - Improper integrals - Applications: Hydrostation and centres of mass.	Integ ns by c forc	gration / partia ce and	by p al frac press	arts, tion, sure,
UNIT V	MULTIPLE INTEGRALS				12
Double inte	egrals – Change of order of integration – Double integrals in polar coordin	ates	– Area	encl	and
by plane c – Applicati	urves – Triple integrals – Volume of solids – Change of variables in dout ons: Moments and centres of mass, moment of inertia.	ole ar	nd triple	e inte	grals
by plane c – Applicati	urves – Triple integrals – Volume of solids – Change of variables in doub ons: Moments and centres of mass, moment of inertia. T	ole ar OTA	nd triple L: 60 F	e integ PERIC	grals

COURSE OUTCOMES:

At the end of the course, learners will be able to

CO1: Use the matrix algebra methods for solving engineering problems.

CO2: Apply differential calculus tools in solving various application problems.

CO3: Make use of differential calculus ideas on several variable functions.

CO4: Identify suitable methods of integration in solving practical problems.

C05: Solve practical problems of areas, volumes using multiple integrals.

TEXT BOOKS:

- 1. Kreyszig.E, "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons, New Delhi, 2016.
- 2. Grewal.B.S. "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2018.
- 3. James Stewart, "Calculus: Early Transcendentals", 8th Edition, Cengage Learning, New Delhi, 2015.

REFERENCES:

- 1. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", 7th Edition, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 2009.
- 2. Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", 5th Edition, Narosa Publications, New Delhi, 2016.
- 3. Ramana. B.V., "Higher Engineering Mathematics", 6th Edition, McGraw Hill Education Pvt. Ltd, New Delhi, 2010.
- 4. Thomas. G. B., Hass. J and Weir. M.D, "Thomas Calculus", 14th Edition, Pearson India, 2018.

Zirrior (Common to I Year B.E. / B.Tech. Students) 3 0 0 OBJECTIVES: The main objectives of this course are: • To illustrate the students effectively to achieve an understanding of mechanics. • • To infer the students to gain knowledge of electromagnetic waves and its applications. •	2104104	ENGINEERING PHYSICS	L	Т	Ρ	С
OBJECTIVES: The main objectives of this course are: • To illustrate the students effectively to achieve an understanding of mechanics. • To infer the students to gain knowledge of electromagnetic waves and its applications. • To explain the basics of oscillations, optics and lasers. • To outline the importance of quantum physics. • To relate the students towards the applications of quantum mechanics. UNIT I MECHANICS Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	2196101	(Common to I Year B.E. / B.Tech. Students)	3	0	0	3
The main objectives of this course are: • To illustrate the students effectively to achieve an understanding of mechanics. • To infer the students to gain knowledge of electromagnetic waves and its applications. • To explain the basics of oscillations, optics and lasers. • To outline the importance of quantum physics. • To relate the students towards the applications of quantum mechanics. UNIT I MECHANICS Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	OBJECTIVE	S:				
 To illustrate the students effectively to achieve an understanding of mechanics. To infer the students to gain knowledge of electromagnetic waves and its applications. To explain the basics of oscillations, optics and lasers. To outline the importance of quantum physics. To relate the students towards the applications of quantum mechanics. UNIT I MECHANICS Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .1 –moment of inertia of continuous bodies – M.1 of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations.	The main ob	jectives of this course are:				
 To infer the students to gain knowledge of electromagnetic waves and its applications. To explain the basics of oscillations, optics and lasers. To outline the importance of quantum physics. To relate the students towards the applications of quantum mechanics. UNIT I MECHANICS Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum – double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	• To illu:	strate the students effectively to achieve an understanding of mechanics.				
 To explain the basics of oscillations, optics and lasers. To outline the importance of quantum physics. To relate the students towards the applications of quantum mechanics. UNIT I MECHANICS Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	 To infe 	er the students to gain knowledge of electromagnetic waves and its applicatio	ns.			
To outline the importance of quantum physics. To relate the students towards the applications of quantum mechanics. MITI MECHANICS Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	 To exp 	plain the basics of oscillations, optics and lasers.				
To relate the students towards the applications of quantum mechanics. MIT I MECHANICS Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	To out	line the importance of quantum physics.				
UNIT IMECHANICSMulti-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations.UNIT IIELECTROMAGNETIC WAVES	 To relate 	ate the students towards the applications of quantum mechanics.				
Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations.UNIT IIELECTROMAGNETIC WAVES	UNIT I	MECHANICS				9
of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and mome of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES						
of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	Multi-particle	dynamics: Center of mass (CM) – CM of continuous bodies – motion of the C	M – k	inetio	ene	ergy
rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rig diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	Multi-particle of system of	dynamics: Center of mass (CM) – CM of continuous bodies – motion of the C particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic er	M – k nergy	inetic and	ene morr	ergy nent
diatomic molecule - gyroscope - torsional pendulum– double pendulum –Introduction to nonline oscillations. UNIT II ELECTROMAGNETIC WAVES	Multi-particle of system of of inertia - th	dynamics: Center of mass (CM) – CM of continuous bodies – motion of the C particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic er eorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic m	M – k nergy nolecu	inetic and Ile - 1	ene morr orqu	ergy nent
UNIT II ELECTROMAGNETIC WAVES	Multi-particle of system of of inertia - th rotational dy	dynamics: Center of mass (CM) – CM of continuous bodies – motion of the C particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic er eorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic m namics of rigid bodies – conservation of angular momentum – rotational ene	M – k nergy nolecu rgy st	inetic and ile - 1 ate c	c ene mom corqu	ergy nent ie – igid
	Multi-particle of system of of inertia - th rotational dy diatomic mo oscillations.	dynamics: Center of mass (CM) – CM of continuous bodies – motion of the C particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic er eorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic m namics of rigid bodies – conservation of angular momentum – rotational ene plecule - gyroscope - torsional pendulum– double pendulum –Introduc	M – k nergy nolecu rgy st tion	inetic and ile - 1 ate c to n	c ene mom corqu of a r onlin	ergy ient ie – igid iear
	Multi-particle of system of of inertia - th rotational dy diatomic mo oscillations.	dynamics: Center of mass (CM) – CM of continuous bodies – motion of the C particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic er eorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic m namics of rigid bodies – conservation of angular momentum – rotational ene plecule - gyroscope - torsional pendulum– double pendulum –Introduc	M – k nergy nolecu rgy st	inetic and lle - t ate c to n	ene mom orqu of a r onlin	ergy nent ie – igid iear

field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

Simple harmonic motion - resonance –analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave – sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference– Michelson interferometer –Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO2 laser, semiconductor laser –Basic applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

Photons and light waves - Electrons and matter waves –Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization –Free particle - particle in an infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

9

9

9

OUTCOMES:
At the end of the course, learners will be able to:
CO1: Explain the importance of mechanics.
CO2: Extend their knowledge in electromagnetic waves.
CO3: Illustrate a strong foundational knowledge in oscillations, optics and lasers.
CO4: Interpret the importance of quantum physics.
CO5: Summarize quantum mechanical principles towards the formation of energy bands.
TEXT BOOKS:
1. D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", First Edition, McGraw Hill Education, 2017.
 E.M.Purcell and D.J.Morin, "Electricity and Magnetism", Third Edition, Cambridge University Press, 2013.
 Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", Seventh Edition, McGraw-Hill, 2017.
REFERENCES
1. R.Wolfson. "Essential University Physics", Volume 1 & 2., First Edition (Indian Edition) Pearson Education, 2009.
 Paul A. Tipler, "Physics" - Volume 1 & 2, First Edition (Indian Edition), CBS Publishers & Distributors, 2004.
 K.Thyagarajan and A.Ghatak. "Lasers: Fundamentals and Applications", Second Edition, Laxmi Publications, (Indian Edition), 2019.
 D.Halliday, R. Resnick and J. Walker, "Principles of Physics", 10th Edition (Indian Edition), Wiley, 2015.
 N.Garcia, A.Damask and S.Schwarz, "Physics for Computer Science Students", First Edition, Springer Verlag, 2012.

(Common to all B.E / B.Tech. Programmes)	3						
 COURSE OBJECTIVES: The main objectives of this course are: To inculcate sound understanding of water quality parameters and water treatment techniques. To impart knowledge on the basic principles and preparatory methods of nanomaterials. To introduce the basic concepts and applications of phase rule and composites. To facilitate the understanding of different types of fuels, their preparation, properties a combustion characteristics. To familiarize the students with the operating principles, working processes and applications energy conversion and storage devices. 	and s of						
UNIT I WATER AND ITS TREATMENT	9						
Water: Sources and impurities, Water quality parameters: Definition and significance of-colour, odo turbidity, pH, hardness, alkalinity, TDS, COD and BOD, fluoride and arsenic. Municipal water treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Desalination of bracki water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittleme Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodiu aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeol process.	our, ent: ish ent, um olite						
UNIT II NANOCHEMISTRY	9						
Basics : Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials : Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning.							
UNIT III PHASE RULE AND COMPOSITES	9						
 Phase rule: Introduction, definition of terms with examples. One component system - water system Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two compone system: lead-silver system - Pattinson process. Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polym matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polym matrix composites. 	m; ent ner						
UNIT IV FUELS AND COMBUSTION	9						
Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO2 emission and carbon foot print.							
UNIT V ENERGY SOURCES AND STORAGE DEVICES	9						

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles-working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

COURSE OUTCOMES:

At the end of the course, learners will be able to

- **CO1:** Infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- **CO2:** Identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- **CO3:** Apply the knowledge of phase rule and composites for material selection requirements.
- **CO4:** Recommend suitable fuels for engineering processes and applications.
- **CO5:** Recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, Dhan Patrai Publishing Company (P) Ltd, New Delhi, 2018.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.
- 3. S.S. Dara, "A text book of Engineering Chemistry", 12th Edition, S. Chand Publishing, 2018.

REFERENCES:

- 1. B. S. Murty, P. Shankar, Baldev Raj, B.B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-II M Series in Metallurgy and Materials Science, 2018.
- 2. O.G. Palanna, "Engineering Chemistry" 2nd Edition, McGraw Hill Education (India) Private Limited, 2017.
- 3. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 4. Shikha Agarwal, "Engineering Chemistry-Fundamentals and Applications", 2nd Edition, Cambridge University Press, Delhi, 2019
- 5. O.V. Roussak and H.D. Gesser, "Applied Chemistry-A Text Book for Engineers and Technologists", 2nd Edition, Springer Science Business Media, New York, 2013.

TOTAL: 45 PERIODS

21CS101	PROBLEM SOLVING AND PYTHON PROGRAMMING L T P				С			
	(Common to all B.E./B.Tech Programmes)				3			
COURSE OBJECTIVES:								
The main objectives of this course are:								
To desc	ribe the basics of algorithmic problem solving.							
To solve	e problems using Python conditionals and loops.							
 To illust 	rate Python functions and use function calls to solve problems.							
To make	e use of Python data structures - lists, tuples, and dictionaries to represent	com	plex	data	l .			
To expla	ain input/output with files in Python.							
UNIT-I COMPUTATIONAL THINKING AND PROBLEM SOLVING								
Fundamentals	s of Computing – Identification of Computational Problems -Algorithms,	build	ing l	olock	s of			
algorithms (st	atements, state, control flow, functions), notation (pseudo code, flow ch	art,	prog	ramr	ning			
language), alg	gorithmic problem solving, simple strategies for developing algorithms (ite	ratio	n, re	curs	ion).			
number in a r	oblems: find minimum in a list, insert a card in a list of sorted cards, and	gue	ss a	n inte	eger			
UNIT-II	DATA TYPES, EXPRESSIONS, STATEMENTS				9			
Python interp	reter and interactive mode, debugging; values and types: int, float, boolea	an, si	ring,	and	list;			
variables, exp	pressions, statements, tuple assignment, precedence of operators, com	ment	ts; II	lustra	ative			
programs: exc	change the values of two variables, circulate the values of n variables, dist	ance	betv	veen	two			
points.								
UNIT-III CONTROL FLOW, FUNCTIONS, STRINGS				9				
Conditionals:	Boolean values and operators, conditional (if), alternative (if-else), chain	ed c	ondi	tiona	l (if-			
else-if-else); l	teration: state, while, for, break, continue, pass; Fruitful functions: return va	alues	, par	ame	ters,			
and methods	string module: Lists as arrays Illustrative programs: square root, acd, ex	iy, si none	nng ntiat	ion	ions sum			
an array of nu	mbers, linear search, binary search.	pone	indat		oum			
UNIT-IV LISTS. TUPLES. DICTIONARIES				9				
Lists, list and	rotiona list clicas list matheda list loop mutability aliasing clasing list				to rot			
Tunles: tunle	assignment tuble as return value: Dictionaries: operations and metho	s, lis de :	i par adva	ame	lers; l list			
processing -	list comprehension: Illustrative programs: simple sorting, histogram.	Stu	dent	s m	arks			
statement, Re	tail bill preparation.			-				
UNIT-V	FILES, MODULES, PACKAGES				9			
Files and exce	eptions: text files, reading and writing files, format operator: command line	arqu	men	ts. ei	rors			
and exception	ns, handling exceptions, modules, packages; Illustrative programs: word	l cou	int, d	copy	file,			
Voter's age validation, Marks range validation (0-100).								
TOTAL :45 PERIODS								
COURSE OU	TCOMES:							
At the end of	the course, learners will be able to							
CO1: Make us	se of design approaches to solve computational problems.							
CO2: Develop and execute basic Python programs using expressions and input/output statements.								

CO3: Utilize strings, functions and control statements to develop real world problems.

CO4: Construct programs using Python data types like lists, tuples and dictionaries.

CO5: Prepare a Python application by incorporating files and exceptions.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.
- 3. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc- Graw Hill, 2018.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", 1st Edition, Pearson Education, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", 3rd Edition, MIT Press, 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019

21CS102 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY		L	Т	Р	С								
		(Com	mon to all	B.E./B.	. I ech P	rograr	nmes)			0	0	4	2
COURS The ma • T • T • T • T • T	E OBJEC ain objecti o describ o solve p o illustrat o make u o explain	TIVES: ves of this course the basics of alg oblems using Py Python function se of Python data input/output with	e are: gorithmic pr thon conditi is and use fi a structures files in Pyth	roblem s tionals a function s - lists, t hon.	solving. and loop a calls to tuples, a	os. o solve and dic	proble	ms. es to repr	resent	com	olex	data.	
			LIST	OF EX	KPERIM	IENTS							
1.	Identifica charts fo Weight c	tion and solving o the same. (Elec f a steel bar, com	of simple rea tricity Billing npute Electri	eal life o g, Retai rical Cu	or scient il shop b irrent in	ific or t billing, \$ Three	echnic Sin ser Phase	al probler ies, weigl AC Circu	ns, and ht of a iit, etc.	d dev moto ,)	/elop orbik	ving fl e,	low
2.	Python p variables	rogramming usin , circulate the val	g simple sta lues of n va	atement ariables,	nts and e , distand	express ce betw	sions (e veen tv	exchange vo points)	the va	lues	of tv	VO	
3.	Scientific pyramid	problems using pattern)	Conditionals	ls and It	terative	loops.	(Numb	er series	, Numt	oer P	atter	'ns,	
4.	Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)						&						
5.	Impleme an auton	nting real-time/teo obile, Elements o	chnical appl of a civil stru	lications ructure,	s using etc., - c	Sets, I operatio	Dictionation	aries. (La Sets & Die	nguage ctionar	e, co ies)	mpo	nents	s of
6.	Impleme	nting programs u	sing Functio	ons. (Fa	actorial,	larges	t numb	er in a lis	t, area	of s	hape	;)	
7.	Impleme characte	nting programs u s)	sing Strings	s. (rever	rse, pali	indrom	e, char	acter cou	int, rep	lacin	ıg		
8.	Impleme Matplotli	nting programs u b, scipy)	sing written	n module	es and	Python	Stand	ard Librai	ries (pa	anda	s, nı	impy.	
9.	Impleme word cou	nting real-time/teent, longest word)	chnical appl	olications	is using	File ha	andling	. (copy fro	om one	file	to ar	othe	r,
10.	Impleme error,vot	nting real-time/te er's age validity, s	chnical appl student mar	lications rk range	is using e validat	Except tion)	tion ha	ndling. (d	ivide b	y ze	ro		
11.	Exploring	Pygame tool.											
12.	Developi	ng a game activit	ty using Pyg	game lik	ke boun	icing ba	all, car	race etc.,					
									тот	AL:	60 P	ERIO	DS
COURS At the e CO1: [CO2:	SE OUTC and of the Develop al lustrate a	DMES: course, learners gorithmic solutior nd execute basic am for scientific l	will be able ns to simple Python pro	e to e compu ograms i sing stri	utationa using si	l Proble imple s	ems stateme	ents.	amont	6			

CO3: Build program for scientific problems using strings, functions and control statements.

CO4: Utilize compound data types lists, tuples and dictionaries for real-time applications.

CO5: Experiment the python packages, files and exceptions for developing software applications

21PC101 PHYSICS AND CHEMISTRY LABORATORY	L	Т	Ρ	С			
(Common to I year B.E. / B.Tech., students)	0	0	4	2			
OBJECTIVES:							
 To explain the proper use of various kinds of physics laboratory equipment. 							
 To extend how data can be collected, presented and interpreted in a clear and concise manner. 							
 To infer problem solving skills related to physics principles and interpretation of experimental data. 							
To summarize error in experimental measurements and techniques used to minimize such error.							
• To translate the student as an active participant in each part of all lab exercises.							
LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 7 Experiments)							
1. Torsional pendulum - Determination of rigidity modulus of wire and moment of inert	a of regu	lar an	d irreç	jular			
objects.							
2. Simple harmonic oscillations of cantilever.							
Non-uniform bending - Determination of Young's modulus							
Uniform bending – Determination of Young's modulus							
5. Laser- Determination of the wave length of the laser using grating							
6. Air wedge - Determination of thickness of a thin sheet/wire							
7. a) Optical fibre -Determination of Numerical Aperture and acceptance angle							
b) Compact disc- Determination of width of the groove using laser.							
8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.							
9. Ultrasonic interferometer - Determination of the velocity of sound and compressi	oility of lic	quids					
10. Post office box - Determination of Band gap of a semiconductor.							
11. Photoelectric effect							
12. Michelson Interferometer.							
13. Melde's string experiment							
14. Experiment with lattice dynamics kit.							
	ΤΟΤΑΙ	.: 30 I	PERIC	DS			
OUTCOMES: At the end of the course, learners will be able to:							
CO1: Explain the functioning of various physics laboratory equipment							
CO2: Relate the graphical models to analyze laboratory data							
CO3: Interpret mathematical models as a medium for quantitative reasoning and des	cribing p	hysic	al real	ity.			
CO4: Explain Access, process and analyze scientific information.							
CO5: Translate students to solve problems individually and collaboratively							
REEPENCES							
 "Physics Laboratory Manual", Department of Physics, Velammal College of Er Madurai (2021) 	gineering	g & Te	chnol	ogy,			

P. Mani, "Physics Laboratory", Dhanam Publications, 2021.

21PC101

PHYSICS AND CHEMISTRY LABORATORY (Common to all B.E / B.Tech. Programmes)

L	Т	Ρ	С
0	0	4	2

CHEMISTRY LABORATORY

COURSE OBJECTIVES:

The main objectives of this course are:

- To inculcate experimental skills to test basic understanding of water quality parameters such as acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electro analytical techniques such as pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles.
- To analyze the quality of coal sample using proximate analysis.

List of Experiments (Any 7 experiments)

- 1. Preparation of Na_2CO_3 as a primary standard and estimation of acidity of a water sample using the primary standard.
- 2. Determination of types and amount of alkalinity in water sample.
- 3. Determination of total, temporary & permanent hardness of water by EDTA method.
- 4. Determination of DO content of water sample by Winkler's method.
- 5. Determination of chloride content of water sample by Argentometric method.
- 6. Estimation of copper content of the given solution by lodometry.
- 7. Estimation of TDS of a water sample by gravimetry.
- 8. Determination of strength of given hydrochloric acid using pH meter.
- 9. Determination of strength of acids in a mixture of acids using conductivity meter.
- 10. Conductometric titration of barium chloride against sodium sulphate. (precipitation titration)
- 11. Estimation of iron content of the given solution using potentiometer.
- 12. Estimation of sodium /potassium present in water using flame photometer.
- 13. Preparation of nanoparticles ($TiO_2/ZnO/CuO$) by Sol-Gel method.
- 14. Estimation of Nickel in steel.
- 15. Proximate analysis of Coal.

COURSE OUTCOMES:

At the end of the course, learners will be able to

CO1: To analyze the quality of water samples with respect to their acidity, alkalinity, hardness and DO.

CO2: To determine the amount of metal ions through volumetric and spectroscopic techniques.

CO3: To analyze and determine the composition of alloys.

CO4: To learn simple method of synthesis of nanoparticles.

CO5: To quantitatively analyze the impurities in solution by electro analytical techniques.

Text Book:

J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, "Vogel's Textbook of Quantitative Chemical Analysis" 2009.

21TA101

தமிழர் மரபு

அலகு I <u>மொழி மற்றும் இலக்கியம்</u>:

இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் -பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

அலகு II மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை:

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

அலகு III நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: 3 தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

அலகு IV <u>தமிழர்களின் திணைக் கோட்பாடுகள்</u>:

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.

அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு:

இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)

LTPC 1 001 3

3

3

TOTAL: 15 PERIODS

3

- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SEMESTER-II

	ENGLISH-II	1	т	Р	C	
21EN102	(Common to all B.E./B.TECH. Programmes)	3	0	0	3	
COURSE OF	BJECTIVES:	•	•	•		
The main ob	jectives of this course are:					
• T	, o develop strategies and skills to enhance their ability to read and comp	reher	nd en	ginee	ering	
a	nd technology texts.			0	0	
• T	o prepare and write convincing job applications and effective reports.					
• T	o demonstrate their speaking skills to make technical presentations and	parti	cipate	e in a	roup	
di	scussions.	•	•	0	•	
• T	o apply their Listening skill which will help them comprehend lectures and	d talk	s in th	neir a	reas	
ot	f specialization					
• T	o choose appropriate soft skills to suit the situation.					
UNIT I	INTRODUCTION TO TECHNICAL ENGLISH				9	
Listening -	Factual and Academic speeches; Speaking - Asking for and giving dire	ectior	15 - R	eadi	ng -	
Technical te	xts from - Newspapers /websites; Writing - Statements - Definitions - i	ssue	base	ed wi	iting	
instructions	- Checklists - Recommendations; Vocabulary Development- tec	hnica	al vo	cabu	lary;	
Grammar - E	Error spotting - Compound words; Soft skills - Leadership Skills.					
UNIT II	READING AND STUDY SKILLS				9	
Listening - Listening to longer technical talks and completing exercises based on them; Speaking -						
Describing a	a general process; Reading - Reading longer technical texts - Ider	ntifyir	ig the	e vai	ious	
transitions in	a text - Paragraphing; Writing - Interpreting charts, graphs; Vocabula	ary D	evel	opme	ent -	
Vocabulary u	used in formal letters/emails and reports Grammar - Impersonal passiv	ve vo	oice, r	nume	rical	
adjectives - s	oft skills – Teamwork.					
UNIT III	TECHNICAL WRITING AND GRAMMAR				9	
Listening -	Listening to classroom lectures, talks on engineering /technology; Spea	aking	I - int	rodu	ction	
to technical p	presentations; Reading - longer texts both general and technical, practic	e in s	speed	l read	ding;	
Writing - De	escribing a technical process; Vocabulary Development - Sequence	word	s - N	lissp	elled	
words; Gram	mar - Embedded sentences; Soft skills - Decision making.					
UNIT IV	JOB APPLICATIONS				9	
Listening -	Listening to documentaries and making notes. Speaking - Mechanic	s of	prese	entati	ons;	
Reading - Reading for detailed comprehension; Writing - Email etiquette - job application - Cover Letter						
- Resume preparation(via email and hard copy) - Analytical essay writing - Vocabulary Development -						
finding suita	ble synonyms - paraphrasing; Grammar - clauses - If conditionals -	Soft	SKIII	s -	ime	
Managemen					•	
	GROUP DISCUSSION AND REPORT WRITING	n a	Dee	dina	9	
Listening - IED talks; Speaking - Participating in a group discussion - Reading - Reading and						
of a meeting - Vecabulary Development - Verbal appledies: Greenmer - reported appach: Seff ekille						
or a meeting - vocabulary Development - verbal analogies; Grammar - reported speech; Soft Skills -						
0011110111000	TO.	ται ·	45PF		DS	
COURSE OF	JTCOMES [.]			0	20	
At the end of	the course learners will be able to:					

CO1: Interpret by reading information in technical texts

- **CO2:** Choose appropriate language to write convincing job applications, resume and reports
- CO3: Formulate the technical ideas effectively in spoken and written forms
- **CO4:** Analyze and understand spoken language in lectures and talks

CO5: Demonstrate basic soft skills in life

TEXT BOOKS:

- 1. Board of Editors, Fluency in English-A Course book for Undergraduate Engineers and Technologist. Orient Blackswan Pvt Ltd, Hyderabad: 2018
- 2. Jawahar, Jewelcy & Rathna.P. Communicative English Workbook. VRB Publishers Pvt Ltd. Chennai. 2018.
- 3. Board of Editors, Department of English, Anna University, Chennai. Mindscapes-English for Technologists and Engineers. Orient Black Swan Pvt Ltd, Chennai, 2012.

REFERENCES:

- 1. Verma, Shalini. Technical Communication for Engineers. Vikas Publishing House Pvt Ltd. New Delhi. 2015
- 2. Raman, Meenakshi & Sharma, Sangeeta. Technical Communication English Skills for Engineers. Oxford University Press. 2008.
- 3. Rizvi, Ashraf.M. Effective Technical Communication. MC Graw Hill Education Pvt Ltd. New Delhi. 2016.

		L	Т	Р	С	
21MA103	SAMPLING TECHNIQUES AND NUMERICAL METHODS (COMMON TO B.E. CSE, ECE & B.Tech. IT)	3	2	0	4	
COURSE	OBJECTIVES:					
The main o	objectives of this course are:					
• To	provide necessary basic concepts in probability					
• To	acquaint the knowledge of testing of hypothesis for small and large samp	oles w	hich	plays	s an	
imp	oortant role in real life problems.					
• To	understand the basic concepts of classification of design of experiments.					
• To	introduce the basic concepts of solving algebraic and transcendenta	al equ	uatior	ns us	sing	
nur	nerical techniques.					
• To	introduce the numerical techniques of interpolation in various interv	als a	nd n	umei	rical	
tec	hniques of differentiation and integration which plays an important role	in eng	ginee	ring	and	
tec	hnology disciplines.					
UNIT I	PROBABILITY				12	
Introductio	n-Sample Spaces and Events-Axioms of Probability-Interpretations and P	roper	ties of	f		
Probabilitie	es-Conditional Probabilities-Baye's theorem- Independence.					
UNIT II	TESTING OF HYPOTHESIS				12	
Large sam	ple test based on Normal distribution for single mean and difference of me	eans -	- Tes	ts ba	sed	
on t, χ2 an	d F distributions for testing means and variances – Contingency table (Tes	t for Ir	ndepe	ender	ncy)	
– Goodnes	ss of fit.					
UNIT III	DESIGN OF EXPERIMENTS				12	
Introductio	n, aim, basic designs of experiments, one way and two way classifica	tions	- Co	mple	etely	
randomize	d design – Randomized block design – Latin square design.				1	
	SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS				12	
Newton Ra	aphson method –Method of False position- pivoting – Gauss Jordan n	netho	ds –	Itera	tive	
method: G	auss Seidel – Matrix inversion by Gauss Jordan method – Eigen values o	t a ma	atrix b	у ро	wer	
method.		<u> </u>				
	INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICA				12	
Lagrange's	s and Newton's divided difference interpolations – Newton's forward and b	ackw	ard di	ffere	nce	
interpolatio	on – Approximation of derivatives using interpolation polynomials – Numeric	cal inte	egrati	on u	sing	
Trapezoida	al and Simpson's 1/3 rules, 3/8 th rule.					
	T0	TAL:	60 PE	RIO	DS	
COURSE	OUTCOMES:					
At the end	of the course, learners will be able to					
CO1: Appl	y the concepts of Probability in Engineering problems.					
CO2: Expla	ain the test of hypothesis for small and large samples by using various tes	t like	t-test	, F-te	est,	
Z-tes	st and χ^2 test.					
CO3: Apply the basic concepts of classifications of design of experiments.						
CO4: Solve the system of equations and the eigen value problems using iterative procedure.						
CO5: Inter	pret the value of an unknown function at any interpolated point of the give	n tabı	ulated	l valu	les.	
TEXT BOO	DKS:					
1. JAN Lea	1. JAY.L. Devore, "Probability and Statistics for Engineering and the Science", 9 th Edition, Cengage					
2. Joh	nson. R.A., and Irwin Miller, John Freund, "Miller and Freund's Probabilitingineers", 12 th Edition, Pearson Education, Asia, 2011	ty and	l Stat	istics	s for	

3. Gerald. C.F., and Wheatley. P.O. "Applied Numerical Analysis", 7thEdition, Pearson Education, Asia, New Delhi, 2008.

REFERENCES:

- 1. Walpole. R.E., Myers. R.H., Myers. S.L., and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007.
- 2. Spiegel. M.R., Schiller. J., and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", 3rd Edition, Tata McGraw Hill, 2012.
- 3. Chapra. S.C., and Canale. R.P, "Numerical Methods for Engineers", 5th Edition, Tata McGraw Hill, New Delhi, 2007.
- 4. Grewal. B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 9th Edition, Khanna Publishers, New Delhi, 2007.

<u>г г г</u>			-	_		
21PH103	PHYSICS FOR INFORMATION SCIENCE	L	1	P	0	
	(Common to B.E. CSE/B. rech. Programmes)	3	U	U	3	
OBJECTIVES:						
I o infer the importance in studying electrical properties of materials.						
To extend the students' knowledge in semiconductor physics.						
 To illustrate knowledge on magnetic properties of materials. 						
 To summ 	narize different optical properties of materials, optical displays and app	olicatio	ons.			
To translate an idea of significance of Nano structures, quantum confinement, ensuing Nano device						
applicatio	ons and quantum computing.					
UNIT I ELECTRICAL PROPERTIES OF MATERIALS						
Classical free	electron theory - Expression for electrical conductivity - Thermal cor	nducti	vity, e	xpres	sion	
- Wiedemann	-Franz law - Success and failures - Electrons in metals - Particle in a the	nree-c	limen	siona	box	
- Degenerate	states - Fermi- Dirac statistics - Density of energy states - Electron effe	ctive	mass	- Con	cept	
of hole.						
UNIT II	SEMICONDUCTOR PHYSICS				9	
Intrinsic Semi	conductors - Energy band diagram - Direct and indirect band gap sem	niconc	luctor	s - Ca	arrier	
concentration	in intrinsic semiconductors - extrinsic semiconductors - Carrier cond	entra	tion ir	n n-ty	pe &	
p-type semico	onductors - Variation of carrier concentration with temperature - Variati	on of	Fermi	level	with	
temperature	and impurity concentration - Carrier transport in Semiconductor: r	andor	n mo	tion,	drift,	
mobility and o	diffusion - Hall effect and devices - Ohmic contacts - Schottky diode.					
UNIT III	MAGNETIC PROPERTIES OF MATERIALS				9	
Magnetic dip	ole moment - Atomic magnetic moments - Magnetic permeability	and	susc	eptibi	ity -	
Magnetic mat	erial classification: diamagnetism - Paramagnetism - Ferromagnetism	- Anti	erron	nagne	tism	
- Ferrimagnet	ism - Ferromagnetism: origin and exchange interaction saturation mag	gnetiz	ation	and C	Curie	
temperature -	Domain Theory- M versus H behavior - Hard and soft magnetic mate	erials ·	Exar	nples	and	
uses - Magne	tic principle in computer data storage - Magnetic hard disc (GMR ser	sor).				
UNITIV	OPTICAL PROPERTIES OF MATERIALS				9	
Classification	of optical materials - carrier generation and recombination processes -	Absc	rptior	n emis	sion	
and scattering	g of light in metals, insulators and semiconductors (concepts only) - p	hoto d	currer	it in a	P-N	
diode - solar	cell - LED - Organic LED - Laser diodes - Optical data storage technic	ques.				
UNIT V	NANODEVICES AND QUANTUM COMPUTING				9	
Introduction -	Quantum confinement - Quantum structures: quantum wells, wires an	nd dot	s - Ba	and ga	ap of	
nanomaterial	s. Tunneling - Single electron phenomena: Coulomb blockade - Reso	nant-	tunne	ling d	iode	
- single electi	ron transistor - quantum cellular automata - Quantum system for info	rmati	on pro	ocess	ing -	
quantum state	es - classical bits - quantum bits or qubits - CNOT gate - multiple qub	its - q	uantu	ım ga	tes -	
advantage of quantum computing over classical computing (qualitative).						
	TC	TAL:	45 P	ERIO	DS	
COURSEOUTCOMES:						
At the end of	the course, learners will be able to:					
CO1: Demonstrate the classical and quantum electron theories, and energy band structures.						
CO2: Infer knowledge on basics of semiconductor physics and its applications in various devices.						
CO3: Summarize magnetic properties of materials and their applications in data storage.						
CO4: Extend	the functioning of optical materials for optoelectronics	5				
CO5: Transla	ate the basics of quantum structures towards quantum computing.					
TEXT BOOK	S:					
		dition	14/31	~~~	07	

- 2. S.O. Kasap, "Principles of Electronic Materials and Devices", Fourth Edition (Indian Edition), McGraw Hill Education, 2020.
- 3. Parag K. Lala, "Quantum Computing: A Beginner's Introduction", First Edition (Indian Edition) McGraw-Hill Education, 2020.

REFERENCES

- 1. Charles Kittel, "Introduction to Solid State Physics", Indian Edition Wiley, 2019.
- 2. Y.B.Band and Y.Avishai, "Quantum Mechanics with Applications to Nanotechnology and Information Science", First Edition, Academic Press, 2013.
- 3. V.V.Mitin, V.A. Kochelap and M.A.Stroscio, "Introduction to Nano electronics", First Edition, Cambridge University.Press, 2008.
- 4. G.W. Hanson, "Fundamentals of Nano electronics", Indian Edition, Pearson Education 2009.
- 5. B.Rogers, J.Adams and S.Pennathur, "Nanotechnology: Understanding Small Systems", CRC Press, 2014.
| | C |
|--|--------|
| 21ME101 (Common to all B.E./B.Tech. Programmes) 2 0 2 | 3 |
| | |
| The main objectives of this course are: | |
| To sketch the projection of points, lines and planes | |
| To sketch the projection of simple solids | |
| To sketch the projection of sectioned solids and development of lateral surfaces | |
| To sketch the isometric and perspective views of simple solids. | |
| To sketch the orthographic projection of various objects freehandly. | |
| UNIT I PROJECTIONS OF POINTS, LINES AND PLANE SURFACE | 12 |
| Importance of graphics in engineering applications – Use of drafting instruments - Lettering | and |
| dimensionina. | |
| Introduction to Orthographic projections - Principles -Principal planes-First angle projection. Proj | ectior |
| of points located in all quadrants. Projection of straight lines inclined to both the principal pla | nes |
| Determination of true lengths and true inclinations by rotating line method. | |
| Projection of planes (regular polygonal and circular surfaces) inclined to both the principal plan | əs by |
| rotating object method. (Not for Examination) | |
| UNIT II PROJECTION OF SOLIDS | 12 |
| Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the a | xis is |
| inclined to one of the principal planes by rotating object method. | |
| UNIT III PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES | 12 |
| Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one | of the |
| principal planes and perpendicular to the other – obtaining true shape of section. Development of | atera |
| surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. | |
| UNIT IV ISOMETRIC AND PERSPECTIVE PROJECTIONS | 12 |
| Principles of isometric projection – isometric scale –Isometric projections of simple solids and trun | cated |
| solids - Prisms, pyramids, cylinders, cones- Perspective projection of simple solids-Prisms, pyramids, cylinders, cones- | imide |
| and cylinders by visual ray method. | |
| UNIT V FREEHAND SKETCHING | 12 |
| Visualization concepts and Free Hand sketching: Visualization principles –Representation of I | nree |
| binensional objects – Layout of views- Freenand sketching of multiple views from pictonal vie | NS O |
| UDJECIS. | |
| | יחטו |
| COURSE OUTCOMES: | |
| At the end of the course, learners will be able to | |
| CO1: Construct the orthographic projections of points, straight lines and plane surfaces. | |
| CO2: Sketch the orthographic projections of simple solids | |
| CO3: Sketch the orthographic projections of sectional solids and lateral surfaces of the solids. | |
| CO4: Construct the isometric projections and perspective projections of simple solids. | |
| CO5: Sketch the orthographic projection of objects using freehand. | |
| | |
| TEXT BOOKS: | |

1. Natarajan K.V., "A text book of Engineering Graphics", 31st Edition, Dhanalakshmi Publishers, Chennai, 2018.

- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", 15th Edition, New Age International (P) Limited, 2018.
- 3. Bhatt N.D. and Panchal V.M., "Engineering Drawing", 53rd Edition, Charotar Publishing House, 2014. **REFERENCES:**
- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", 2nd Edition, Tata McGraw Hill Publishing Company Limited, 2013.
- 2. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", 2nd Edition, Oxford University, Press, New Delhi, 2015.
- 3. Shah M.B., and Rana B.C., "Engineering Drawing", 2nd Edition, Pearson, 2009.

	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING FOR	L	Т	Ρ	С
21EE104		3	0	0	3
COURSE	(Common to B.E. CSE/B.Tech. Programmes)				
• To	explain the basics of electric circuits and analysis.				
• To	summarize the basics of working principles and application of AC and DC) mac	hine	s	
• To	interpret the domestic and industrial wiring	mac		0.	
• 10	demonstrate analog devices and their characteristics				
• 10	illustrate the application of energianal emplifier				
• 10					•
	ELECTRICAL CIRCUITS	,' <u>o</u> o		lirabb	9 off'o
Laws-Sin	s. Circuit Components. Conductor, Resistor, Inductor, Capacitor – Onin	ite on	w - r d Pa	VIICHI	tors
Waveform:	s Average value, RMS Value, Instantaneous power, real power, reactive	nowe	ranc	lanne	arent
power, pov	ver factor – (Simple problems only)	pono		. appe	
					9
Construction	on and Working principle- DC Separately and Self excited Generators, E	MF e	quati	on, T	/pes
and. Const	ruction and Working Principle of DC motors, Back EMF equation, Types	, Spe	ed ar	nd To	rque
Equation,	Fransformer-Construction, Working principle and Three phase Alternator,	Sync	hron	ous m	notor
and Three	Phase Induction Motor-construction, working principle and Applications (Qualit	ative	Anal	ysis)
UNII III	DOMESTIC AND INDUSTRIAL WIRING	1 6 0 0 0	o #460 ;	~~ f.	9
relay and (sircuit breakers Load calculation, generation cost and Energy Tariff calc	ulatio	n for	ng, iu dom	ses,
and indust	rial loads- HT & I T wiring- Power factor correction	Julatio		uom	55110
	ANALOG ELECTRONICS				9
Resistor, I	nductor and Capacitor in Electronic Circuits- Semiconductor Materials: Sil	icon 8	Ger	maniu	ım –
PN Junctio	n Diodes, Zener Diode – Characteristics Applications – Bipolar Junction	Trans	istor	-Biasi	ng –
Types, I-V	Characteristics and Applications, Rectifier. (Qualitative Analysis)				-
UNIT V	OPERATIONAL AMPILIFIERS AND ITS APPLICATIONS				9
Operationa	al amplifiers, Inverting and Non Inverting Amplifier, Summer, Differe	entiato	ors, I	ntegr	ator,
Voltage to	Current (V/I) and Current to Voltage (I/V) Converter, Multivibrator using 5	55tim			
		AL: 4	3 PE	RIUL	13
At the end	of the course, learners will be able to				
CO1: Inter	pret the electric circuit parameters of simple DC Circuits.				
CO2: Expl	ain the working principle and applications of AC and DC machines.				
CO3: Dem	onstrate the domestic and industrial wiring.				
CO4: Desc	cribe the characteristics of analog electronic devices.				
CO5: Sum	marize the basic concepts of operational amplifiers.				
	Rhattacharva "Basic Electrical and Electronics Engineering" Pearson	Educ	ation	Sec	bnor
Fdit	on 2017	Luut	ador	, 000	
2 Sed	ha R S "A textbook book of Applied Electronics" S Chand & Co. 2008				
2. 000 3. Jam	es A Svoboda Richard C. Dorf "Dorf's Introduction to Electric Circuits"	Wilev	201	8	
	Wood & brucef wollen berg." Power generation operation and cont	rol"	, 20 ohn	wilov	and
	Inc 2016	101,0	onn	wiicy	and
REFEREN	CES				
1. Koth	ari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, Mc	Graw	Hill E	Educa	tion.
201	ייייים אונגער איז				,
2 Tho	nas I Elovd 'Digital Fundamentals' 11th Edition Pearson Education 20)17			
3. Albe	rt Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7t	h edit	ion, i	2017.	
	· · · · · · · · · · · · · · · · · · ·		, .		

4. Badriram, B.H.Vishwakarma, "Power system protection and switchgear", new age international Pvt Ltd publishers, second Edition 2011.

	PROGRAMMING PARADIGM IN C	L	Т	Ρ	С
21AD101		3	0	0	3
COURSE OB	JECTIVES:	<u> </u>			
The main obje	ctives of this course are:				
 To dev 	elop C Programs using basic programming constructs				
 To dev 	elop C programs using arrays and strings				
 To dev 	elop modular applications in C using functions				
 To dev 	elop applications in C using pointers and structures				
To do	nput/output and file handling in C				
UNIT-I	BASICS OF C PROGRAMMING	<u> </u>			9
Associativity statements - S	 Data Types - Constants – Applications of C Language - Structure of Data Types - Constants – Enumeration Constants - Keywords – Operators Expressions - Input/Output statements, Assignment statements – Switch statement - Looping statements – Preprocessor directives - Compile 	ation	prog ecede ision proc	ram ence ma ess	– C and king
UNIT-II	ARRAYS AND STRINGS				9
Introduction to operations: lei	Arrays: Declaration, Initialization – One dimensional array –Two dimension ngth, compare, concatenate, copy – Selection sort, linear and binary search	onal a ch	array	s - St	ring
UNIT-III	FUNCTIONS AND POINTERS				9
Modular prog functions, ma operators – P value, Pass by	ramming - Function prototype, function definition, function call, Built-ir th functions) – Recursion, Binary Search using recursive functions –F ointer arithmetic – Arrays and pointers – Array of pointers – Parameter / reference	i fun Pointe pase	ction ers – sing:	s (st - Poi Pas:	ring nter s by
UNIT-IV	STRUCTURES AND UNION				9
Structure - Ne Dynamic merr	sted structures – Pointer and Structures – Array of structures – Self-reference or allocation - Singly linked list – typedef – Union - Storage classes and	entia Visibi	l stru ility	uctur	es –
UNIT-V	FILE PROCESSING AND DATA ANALYTICS				9
Files – Types data analytics Case study: A	of file processing: Sequential access, Random access- Command line arg -Types of analytics: descriptive, diagnostic, predictive, prescriptive -Data nalyzing data using C programming	umer analy	nts - I /tics	Basic lifecy	s of cle.
	TOI	'AL :	45 P	ERIC	DDS
COURSE OU					
At the end of t	he course, learners will be able to				
CO1: Demons	trate knowledge on C Programming constructs and implement applications using arrays and strings				
CO3: Develop	and implement modular applications in C using functions.				
CO4: Develop	applications in C using structures and pointers.				
CO5: Design a	applications using data analytics in C programming.				
	a Theraia "Brogromming in C" Oxford University Brood Second Edition	2016			
2. Kernig Educa	phan, B.W and Ritchie, D.M, "The C Programming language", Second Edit ition, 2015	2010 ion, I	Pear	son	
3. Anita Pears	Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", 1 on Education, 2013	st Ed	ition	,	
REFERENCE	S:				
1. Paul I Pears	Deitel and Harvey Deitel, "C How to Program with an Introduction to C++ on Education, 2018.	", Eig	ghth	edit	ion,

- 2. Yashwant Kanetkar, Let us C, 17th Edition, BPB Publications, 2020.
- 3. Byron S. Gottfried, "Schaum's Outline of Theory and Problems of Programming with C", McGrawHill Education, 1996.

21CH103 ENVIRONMENTAL SCIENCE (Common to all B.E / B. Tech. Programmes) L T P C COURSE OBJECTIVES: I 0 0 2 0 0 2 To appreciate the structure and function of an ecosystem and biodiversity To realize the environmental impacts of natural resources. Image: Course of the structure and function of an ecosystem repertent to the important social issues and sustainable practices. Image: Course of the structure and function of an ecosystem repertent to the important social issues and sustainable practices. UNIT-I ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY 6 Multidisciplinary nature of environmental studies - ecosystem general structure and function of an ecosystem - ecological succession-biodiversity-oriteria- hot spots in India-threats to biodiversity (mananimal conflicts, habitat loss, poaching)-case studies-conservation of biodiversity- in-situ and ex-situ conservation. 6 NITI-I NATURAL RESOURCES AND ITS ENVIRONMENTAL IMPACTS 6 Natural resources-forest resource-cological functions – causes, effects and control measures of deforestation-water resource-sources-conflict over water-dams benefits and problems-food resource-overgazing- impacts of modern agriculture-energy resource-environmental impacts of wind mills and solar panels- role of an individual in conservation of natural resource-covices and management-ewaste, causes, effects and management-Pollution-causes, effects and control of pollution) act, 1984 - water(prevention and control of pollution) act, 1974 - widifie (protector)) act, 1972 - e					
COURSE OBJECTIVES: The main objectives of this course are: To appreciate the structure and function of an ecosystem and biodiversity • To recognize causes, effects and control measures of different types of pollution. • To coppreciate the importance of disaster management, environmental ethics and values. • To apprehend the important social issues and sustainable practices. UNIT-1 ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY 6 Multidiscipinary nature of environmental studies - ecosystem- general structure and function of an ecosystem- ecological succession-biodiversity-bres-values of biodiversity- endangered and endemic species-red data book- hot spots of biodiversity-conservation of biodiversity in-situ and ex-situ conservation. UNIT-11 NATURAL RESOURCES AND ITS ENVIRONMENTAL IMPACTS 6 Natural resources-forest resource-cological functions – causes, effects and control measures of deforestation-water resource-source-conflict over water-dams benefits and problems-food resource-overgrazing- impacts of over grazing- impacts of modern agriculture-energy resource-environmental impacts of word mills and solar panels - role of an individual in conservation of natural resources. 6 UNIT 11 ENVIRONMENTAL POLLUTION AND CONTROL 6 Air pollution-causes, effects and control of pollution) act, 1974-water(prevention and control of pollution)	21CH103 ENVIRONMENTAL SCIENCE (Common to all B.E / B.Tech. Programmes)	L 2	Т 0	P 0	C 2
UNIT-II NATURAL RESOURCES AND ITS ENVIRONMENTAL IMPACTS 6 Natural resources-forest resource-ecological functions – causes, effects and control measures of deforestation-water resource-sources-conflict over water-dams benefits and problems-food resource-overgrazing- impacts of over grazing- impacts of modern agriculture-energy resource-environmental impacts of wind mills and solar panels- role of an individual in conservation of natural resources. 6 UNIT III ENVIRONMENTAL POLLUTION AND CONTROL 6 Air pollution-causes, effects and control methods - water pollution- causes, effects-waste water treatment-soil pollution-causes, effects and control methods - water pollution) act, 1981-water(prevention and control of pollution) act, 1974- wildlife (protection) act, 1972 - e-waste management rules, 2016-case studies - role of an individual in control of pollution. 6 UNIT IV DISASTER MANAGEMENT AND ENVIRONMENTAL ETHICS 6 Disaster management-causes, effects and management. 6 UNIT V SOCIAL ISSUES AND SUSTAINABLE PRACTICES 6 Unsustainable development- social issues-climate change-causes, effects and control measures-uclear accident and holocausts-EIA-Sustainable development-social issues-climate change-causes, effects and control measures-uclear accident and holocausts-EIA-Sustainable development-goals-target- green buildings- ISO 14000 series. 6 UNIT V SOCIAL ISSUES AND SUSTAINABLE PRACTICES 6 COURSE OUTCOMES: COUTAL: 30 PERIODS 6	(Common to all B.E / B. Tech. Programmes) COURSE OBJECTIVES: The main objectives of this course are: • To appreciate the structure and function of an ecosystem and biodiversity • To realize the environmental impacts of natural resources. • To recognize causes, effects and control measures of different types of pollutio • To comprehend the importance of disaster management, environmental ethics • To apprehend the important social issues and sustainable practices. UNIT-1 ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY Multidisciplinary nature of environmental studies - ecosystem- general structure ecosystem- ecological succession-biodiversity-types-values of biodiversity- endate species-red data book- hot spots of biodiversity-criteria- hot spots in India-threats animal conflicts, habitat loss, poaching)-case studies-conservation of biodiversity	n. and va	0 alues. funct d and divers	ion of ende sity (m	6 an mic an-
UNIT-II INATURAL RESOURCES AND ITS ENVIRONMENTAL IMPACTS 6 Natural resources-forest resource-coological functions – causes, effects and control measures of deforestation-water resource-sources-conflict over water-dams benefits and problems-food resource-overgrazing- impacts of over grazing- impacts of modern agriculture-energy resource-environmental impacts of wind mills and solar panels- role of an individual in conservation of natural resources. UNIT III ENVIRONMENTAL POLLUTION AND CONTROL 6 Air pollution-causes, effects and control methods - water pollution- causes, effects-waste water treatment-soil pollution control acts-air(prevention and control of pollution) act, 1981-water(prevention and control of pollution) act, 1974- wildlife (protection) act, 1972 - e-waste management rules, 2016-case studies - role of an individual in control of pollution. 6 UNIT IV DISASTER MANAGEMENT AND ENVIRONMENTAL ETHICS 6 Disaster management-causes, effects and management of flood, landslide, earthquake and tsunamicase studies - environmental ethics- value education-traditional value systems in India-water conservation-rain water harvesting-watershed management. 6 UNIT V SOCIAL ISSUES AND SUSTAINABLE PRACTICES	conservation.	, 113			Situ
UNIT III ENVIRONMENTAL POLLUTION AND CONTROL 6 Air pollution-causes, effects and control methods - water pollution- causes, effects-waste water treatment-soil pollution-causes, effects-solid waste management–e-waste- causes, effects and management-Pollution control acts-air(prevention and control of pollution) act,1981-water(prevention and control of pollution) act,1974- wildlife (protection) act,1972 - e-waste management rules,2016-case studies - role of an individual in control of pollution. 6 UNIT IV DISASTER MANAGEMENT AND ENVIRONMENTAL ETHICS 6 Disaster management-causes, effects and management of- flood, landslide, earthquake and tsunamicase studies - environmental ethics- value education-traditional value systems in India-water conservation-rain water harvesting-watershed management. 6 UNIT V SOCIAL ISSUES AND SUSTAINABLE PRACTICES 6 Unsustainable development- social issues-climate change-causes, effects and control measures-global warming-causes, effects and control measures-nuclear accident and holocausts-EIA-Sustainable development-goals-target- green buildings- ISO 14000 series. 6 COURSE OUTCOMES: At the end of the course, learners will be able to CO 1: Explain the concept, structure and function of an ecosystem and biodiversity. CO 2: Demonstrate the environmental impacts of natural resources. CO 2: Demonstrate the environmental impacts of natural resources. CO 3: Select the suitable management method for pollution control.	UNIT-II NATURAL RESOURCES AND ITS ENVIRONMENTAL IMPACTS Natural resources-forest resource-ecological functions – causes, effects and deforestation-water resource-sources-conflict over water-dams benefits and prote overgrazing- impacts of over grazing- impacts of modern agriculture-energy resources of wind mills and solar panels- role of an individual in conservation of nature	contro olems- cource ral res	l mea food -envir ource	asures resou ronme s.	6 s of rce- ntal
UNIT IV DISASTER MANAGEMENT AND ENVIRONMENTAL ETHICS 6 Disaster management-causes, effects and management of- flood, landslide, earthquake and tsunamicase studies- environmental ethics- value education-traditional value systems in India-water conservation-rain water harvesting-watershed management. 6 UNIT V SOCIAL ISSUES AND SUSTAINABLE PRACTICES 6 Unsustainable development- social issues-climate change-causes, effects and control measures-global warming-causes, effects and control measures-Acid rain-causes, effects and control measures-ozone layer depletion-causes, effects and control measures-nuclear accident and holocausts-EIA-Sustainable development-goals-target- green buildings- ISO 14000 series. TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, learners will be able to CO 1: Explain the concept, structure and function of an ecosystem and biodiversity. CO 2: Demonstrate the environmental impacts of natural resources. CO 3: Select the suitable management method for pollution control. Co 4: Development method for pollution control.	UNIT III ENVIRONMENTAL POLLUTION AND CONTROL Air pollution-causes, effects and control methods - water pollution- causes, treatment-soil pollution-causes, effects-solid waste management–e-waste- comanagement-Pollution control acts-air(prevention and control of pollution) act, 19 and control of pollution) act, 1974- wildlife (protection) act, 1972 - e-waste management studies - role of an individual in control of pollution.	effect auses 981-wa nent ru	s-was , effe ater(p ules,2	ste w ects reven 016-c	6 ater and tion ase
UNIT V SOCIAL ISSUES AND SUSTAINABLE PRACTICES 6 Unsustainable development- social issues-climate change-causes, effects and control measures-global warming-causes, effects and control measures-Acid rain-causes, effects and control measures-ozone layer depletion-causes, effects and control measures-nuclear accident and holocausts-EIA-Sustainable development-goals-target- green buildings- ISO 14000 series. 6 COURSE OUTCOMES: At the end of the course, learners will be able to CO 1: Explain the concept, structure and function of an ecosystem and biodiversity. CO 2: Demonstrate the environmental impacts of natural resources. CO 3: Select the suitable management method for pollution control.	UNIT IVDISASTER MANAGEMENT AND ENVIRONMENTAL ETHICSDisaster management-causes, effects and management of- flood, landslide, earth case studies- environmental ethics- value education-traditional value syst conservation-rain water harvesting-watershed management.	nquake ems	e and in In	tsuna dia-w	6 ami- ater
TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, learners will be able to CO 1: Explain the concept, structure and function of an ecosystem and biodiversity. CO 2: Demonstrate the environmental impacts of natural resources. CO 3: Select the suitable management method for pollution control.	UNIT VSOCIAL ISSUES AND SUSTAINABLE PRACTICESUnsustainable development- social issues-climate change-causes, effects and con warming-causes, effects and control measures-Acid rain-causes, effects and con layer depletion-causes, effects and control measures-nuclear accident and holoca development-goals-target- green buildings- ISO 14000 series.	trol m trol m usts-E	easur easur IA-Su	es-glo es-oz istaina	6 obal one able
 COURSE OUTCOMES: At the end of the course, learners will be able to CO 1: Explain the concept, structure and function of an ecosystem and biodiversity. CO 2: Demonstrate the environmental impacts of natural resources. CO 3: Select the suitable management method for pollution control. 	T	OTAL	: 30 F	PERIC	DS
 CO 4: Practice the proper way of managing disaster with environmental ethics. CO 5: Recognize social issues and adopt suitable sustainable practices. Text Books: Kaushik, A & Kaushik. C.P, "Environmental Science and Engineering", 6th Edition, New Age 	COURSE OUTCOMES: At the end of the course, learners will be able to CO 1: Explain the concept, structure and function of an ecosystem and biodiversity CO 2: Demonstrate the environmental impacts of natural resources. CO 3: Select the suitable management method for pollution control. CO 4: Practice the proper way of managing disaster with environmental ethics. CO 5: Recognize social issues and adopt suitable sustainable practices. Text Books: 1. Kaushik, A & Kaushik. C.P, "Environmental Science and Engineering", 6	y th Edi	tion,	New	Age

- 2. Garg S.K & Garg, Ecological and Environmental studies, Khanna Publishers, 2015.
- 3. Wright & Nebel, Environmental science towards a sustainable future, 12th Editon, Prentice Hall of India Ltd, 2015.

Reference Books:

- 1. Erach Bharucha, "Text book of Environmental studies for Undergraduate courses", 3rd Edition, UGC, 2021.
- 2. Ravi P. Agrahari, Environmental ecology, Biodiversity, climatic change & Disaster management, 1st Edition, McGraw Hill, 2020
- 3. Benney Joseph, "Environmental Science and Engineering", 1st Edition, McGraw Hill Education (India) Pvt Ltd, New Delhi, 2017.

	அலகு I <u>நெசவு மற்றும் பானைத் தொழில்நுட்பம்</u> : 3 சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.	
	அலகு II <u>வடிவமைப்பு மற்றும் கட்டிடத் தொழில்துட்பம்</u> : 3 சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ- சாரோசெனிக் கட்டிடக் கலை.	
	அலகு III உற்பத்தித் தொழில் நட்பம்: 3 கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.	
· · · · ·	அலகு IV <u>வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நட்பம்</u> : அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தாம்பின் முக்கியத்துவம் கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைப அறிவு – அறிவுசார் சமூகம்.	3 Ц

தமிழரும் கொழில்நுட்பமும்

LTPC

1001

3

அறிவியல் தமிழ் மற்றும் கணித்தமிழ்: அலகு V அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம். **TOTAL: 15 PERIODS**

21TA102

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநால் மற்றும் கல்வியியல் பணிகள் கடிகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

	ENGINEERING PRACTICES LABORATORY	L	Т	Ρ	С
21EM101	(Common to all B.E / B.Tech. Programmes)	0	0	4	2

COURSE OBJECTIVES:

The main objectives of this course are:

- To draw pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in common household wood work.
- To demonstrate the basic switch board wiring, fluorescent lamp wiring and stair case wiring using various electrical components.
- To choose various joints in steel plates using arc welding work and machining various simple processes like turning, drilling, tapping in parts
- To build a tray out of metal sheet using sheet metal work.
- To develop electronic circuit and testing for soldering and desoldering using PCB board.

LIST OF EXPERIMENTS:

GROUP – A (CIVIL & ELECTRICAL)

PART – I

CIVIL ENGINEERING PRACTICES PLUMBING WORK:

- Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
- Preparing plumbing line sketches.
- Laying pipe connection to the suction side of a pump
- Laying pipe connection to the delivery side of a pump.
- Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances

WOOD WORK:

- Sawing,
- Planning and Making joints like T-Joint, Cross lap and Dovetail joint.

PART – II

ELECTRICAL ENGINEERING PRACTICES

- Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin sockets.
- Staircase wiring
- Fluorescent Lamp wiring with introduction to CFL and LED types.
- Energy meter wiring and related calculations/ calibration
- Study of Iron Box wiring and assembly
- Study of Fan Regulator (Resistor type and electronic type using Diac/Triac/quadrac)
- Measurement of resistance to earth of an electrical equipment.

GROUP – B (MECHANICAL & ELECTRONICS)	
PART III	
MECHANICAL ENGINEERING PRACTICES	
WELDING WORK:	
 Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding. 	
Practicing gas welding.	
BASIC MACHINING WORK:	
 Usage of Spanners and screw drivers 	
Facing and Turning.	
Taper Turning	
ASSEMBLY WORK:	
 Assembling a centrifugal pump. 	
 Assembling a household mixer. 	
Assembling an air conditioner.	
SHEET METAL WORK:	
Making of a square tray	
FOUNDRY WORK:	
 Demonstrating basic foundry operations. 	
PART IV	
ELECTRONIC ENGINEERING PRACTICES	
SOLDERING WORK:	
Soldering simple electronic circuits and checking continuity.	
ELECTRONIC ASSEMBLY AND TESTING WORK:	
Assembling and testing electronic components on a small PCB.	
ELECTRONIC EQUIPMENT STUDY:	
Study elements of smart phone.	
Assembly and dismantle of computer / laptop	
ТС	OTAL: 60 PERIODS
COURSE OUTCOMES:	
At the end of the course, learners will be able to	
CO1: Build various plumbing joints	
CO2: Develop various carpentry joints.	
CU3: Construct various wiring electrical joints in common household electrical wire	WOľK.
CO4: Construct various welded joints, sheet metal and basic machining operations	

CO5:Develop the electronic circuit for soldering and testing using PCB board.

21AD102 PROGRAMMING PARADIGM IN C LABORATORY	L	Т	Ρ	С	
ZIADIU		0	0	4	2
COURSE	OBJECTIVES:				
The mair	objectives of this course are:				
• To	develop programs in C using basic constructs.				
• To	develop programs in C using arrays.				
• To	develop applications in C using strings, pointers, functions.				
• To	develop applications in C using structures.				
• To	develop applications in C using file processing				
	LIST OF EXPERIMENTS				
1. I/	D statements, operators, expressions				
2. D	ecision-making constructs: if-else, goto, switch-case, break-continue				
3. L	oops: for, while, do-while				
4. A	rays: 1D and 2D, Multi-dimensional arrays, traversal				
5. S	rings: operations, Search and Sort				
6. F R	unctions: call, return, passing parameters by (value, reference), passing ecursion	arra	ys to	o func	tion,
7. P	pinters: Pointers to functions, Arrays, Strings, Pointers to Pointers, Array of P	ointe	ers		
8. S	ructures: Nested Structures, Pointers to Structures, Arrays of Structures and	Unic	ons.		
9. F	les: reading and writing, File pointers, file operations, random access, proces	sor o	direc	tives.	
10. D	ata Analytics: Reading the data from CSV file and Sorting the data.				
	т	DTAL	- :60	PERI	ODS
COURSE	OUTCOMES:				
At the en	d of the course, learners will be able to				
C	D1: Develop programs in C using basic constructs				
C	D2: Develop programs in C using arrays				
C	D3: Develop applications in C using strings, pointers, functions				
C	D4: Develop applications in C using structures.				
C	D5: Develop applications in C using file processing and Data analytics				

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE SEMESTER - III

		L	Т	Ρ	С
21MA203	DISCRETE MATHEMATICS (COMMON TO B.E. CSE & B.Tech. IT)	3	2	0	4
COURSE	DBJECTIVES:				<u> </u>
The main c	bjectives of this course are:				
• To	extend student's logical and mathematical maturity and ability to deal wi	ith ab	strac	tion.	
• To	understand the basic concepts of Combinatorics.				
• To :	study about the properties and characters of different graphs.				
To familiarize the applications of algebraic structures.					
• To identify the concepts and significance of lattices and Boolean algebra which arewidely					
use	d in computer science and engineering.				
UNIT I	LOGIC AND PROOFS				12
Proposition	al Logic – Propositional Equivalences - Predicates and Quantifiers – Ne	ested	Qua	ntifier	s –
Rules of In	ference - Introduction to Proofs – Proof Methods and Strategy.				
UNIT II	COMBINATORICS				1
Mathemati	cal Induction – The Pigeonhole Principle – Permutations and Combina	tions	– Re	curre	nce
Relations -	 Solving Linear Recurrence Relations – Generating Functions – Inclusion 	on ar	nd Exe	clusio	n
Principle a	nd Its Applications.				
UNIT III	GRAPHS				1
Graph Ter	minology and Special Types of Graphs – Matrix Representation of (Grap	hs ar	nd Gr	ар
isomorphis	m – Connectivity – Euler and Hamilton Paths.				1
UNIT IV	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES				1
UNIT IV Groups – S	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co	osets	– La	grang	1 ge'
UNIT IV Groups – S Theorem –	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields.	osets	s – La	grang	1 ge'
UNIT IV Groups – S Theorem – UNIT V	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA	osets	– La	granç	1 ge'
UNIT IV Groups – S Theorem – UNIT V Partial orde	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub Lattices – Some Special Lattices Powerland Medular Distributive	osets	- La	grang	1 ge'
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems –	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive,	osets Alge Com	- La braic	grang	1 ge' 1
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems –	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT	osets Alge Com	- La braic pleme 50 PE	granç ented RIOI	1 1 1
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to	osets Alge Com AL: (ebraic pleme 50 PE	grang ented	1 ge' 1
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (At the end	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to ad student's logical and mathematical maturity and ability to deal with all	osets Alge Com AL: (ebraic pleme 60 PE	granç ented RIOI	1 ge' 1
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (At the end CO1: Exter CO2: Excl	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to nd student's logical and mathematical maturity and ability to deal with at ain the basic concepts of Combinatories	osets Alge Com AL: 0	braic pleme 60 PE	grang ented RIOI	1 1 1
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (At the end CO1: Exter CO2: Expla	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to nd student's logical and mathematical maturity and ability to deal with all ain the basic concepts of Combinatorics.	osets Alge Com AL: 0	ebraic pleme 50 PE	grang ented RIOI	1 ge' 1 DS
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (At the end CO1: Exter CO2: Expla CO3: Make	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to nd student's logical and mathematical maturity and ability to deal with at ain the basic concepts of Combinatorics. e use of the concept of graph theory in computer science and engineering aminate the applications of algebraic structures	osets Alge Com AL: 0	braic pleme 50 PE	grang ented RIOI	1 ge' 1 DS
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE O At the end CO1: Exter CO2: Expla CO3: Make CO4: Disse CO5: Excer	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to nd student's logical and mathematical maturity and ability to deal with all ain the basic concepts of Combinatorics. e use of the course of graph theory in computer science and engineering eminate the applications of algebraic structures.	osets Alge Com AL: 0	braic pleme 50 PE	grang ented RIOI	1 1 1 0 5 5
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (At the end CO1: Exter CO2: Expla CO3: Make CO3: Make CO4: Disse CO5: Exan	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to nd student's logical and mathematical maturity and ability to deal with all ain the basic concepts of Combinatorics. e use of the concept of graph theory in computer science and engineering eminate the applications of algebraic structures. nine the basic theorems and properties of Lattices and Boolean Algebra	osets Alge Com AL: 0	ebraic pleme 50 PE	grang ented RIOI	1 1
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (At the end CO1: Exter CO2: Expla CO3: Make CO3: Make CO4: Disse CO5: Exan	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to nd student's logical and mathematical maturity and ability to deal with al ain the basic concepts of Combinatorics. e use of the concept of graph theory in computer science and engineerir eminate the applications of algebraic structures. nine the basic theorems and properties of Lattices and Boolean Algebra DKS: ean K H "Discrete Mathematics and its Applications" 7 th Edition. Tat	osets Com Alge Com AL: bstrac	braic pleme ction.	grang ented RIOI	1 ge' 1
UNIT IV Groups – S Theorem – UNIT V Partial orde Systems – COURSE (At the end CO1: Exter CO2: Expla CO3: Make CO4: Disse CO5: Exan TEXT BOC 1. Ros	m – Connectivity – Euler and Hamilton Paths. ALGEBRAIC STRUCTURES Subgroups – Cyclic groups - Homomorphism – Normal Subgroup and Co Definitions and Examples of Rings and Fields. LATTICES AND BOOLEAN ALGEBRA ering – Posets – Lattices as Posets – Properties of Lattices - Lattices as Sub-Lattices – Some Special Lattices: Bounded, Modular, Distributive, TOT DUTCOMES: of the course, learners will be able to nd student's logical and mathematical maturity and ability to deal with al- ain the basic concepts of Combinatorics. e use of the concept of graph theory in computer science and engineerir eminate the applications of algebraic structures. nine the basic theorems and properties of Lattices and Boolean Algebra DKS: sen, K.H., "Discrete Mathematics and its Applications", 7 th Edition, Tata Ltd. New Delbi, 2011	osets Alge Com AL: 0 bstrac ng.	braic pleme 50 PE ction.	grang ented RIOI	1 ge [†]

- 2. Tremblay J.P. &Manohar.R,"Discrete Mathematics Structures with Application to Computer Science", 1st Edition, Tata McGraw Hill Publication Ltd., New Delhi, 30th reprint 2011.
- 3. Liu C.L, Mohapatra D.P, "Elements of Discrete Mathematics: A computer-oriented approach", 4th Edition, Tata McGraw Hill, New Delhi, 2017.

- 1. Grimaldi.R.P., "Discrete and Combinatorial Mathematics: An applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2007.
- 2. Koshy, "Discrete Mathematics with Applications", 1st Edition, Elsevier Publications, 2006.
- 3. Bernard Kolman, Robert C Busby, Sharon Cutler Ross, "Discrete Mathematical Structures", 3rd Edition, Prentice Hall, New Delhi, 2015.

21AD201 OPERATING SYSTEM PRINCIPLES L T	Ρ	С			
3 0	0	3			
COURSE OBJECTIVES:					
The main objectives of this course are:					
I o understand the basics and functions of operating systems.					
 To analyze Scheduling algorithms and process synchronization. To analyze various memory management schemes 					
 To be familiar with I/O management and File systems. 					
• To be familiar with the basics of virtual machines and Mobile OS like iOS and Android.					
UNIT-I INTRODUCTION		9			
Computer System - Elements and organization; Operating System Overview - Objectives and Fun Evolution of Operating System; Operating System Structures – Operating System Services Operating System Interface - System Calls – System Programs - Design and Implementation - Structures	ictio - L uctu	ns - Jser Iring			
methods					
UNIT-II PROCESS MANAGEMENT		9			
Basic concepts – Scheduling criteria – Scheduling algorithms – Thread scheduling – Multiple pro- scheduling – Operating system examples – Algorithm Evaluation – The critical-section pro Peterson's solution – Synchronization hardware – Semaphores – Classic problems of synchroniz Critical regions – Monitors – Synchronization examples – Deadlocks – System model – Di characterization – Methods for handling deadlocks – Deadlock Prevention – Deadlock Avoid Deadlock detection – Recovery from deadlock.	bler zatic ead lanc	ssor n – on – lock æ –			
		9			
Main Memory - Swapping - Contiguous Memory Allocation – Paging - Structure of the Page Segmentation; Virtual Memory - Demand Paging – Copy on Write – Page Replacement – Alloc frames -Thrashing.	Tab atio	n of			
UNIT-IV I/O SYSTEMS		9			
File concept – Access methods – Directory structure – File-system mounting – Protection – D implementation – Allocation methods – Free-space management – Disk scheduling – Disk manage Swap-space management – Protection	irec eme	∶tory ≥nt –			
UNIT-V VIRTUAL MACHINES AND MOBILE OS		9			
Virtual Machines – History, Benefits and Features, Building Blocks, Types of Virtual Machines and their Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and Android.					
TOTAL :45 PE	RIC	DS			
COURSE OUTCOMES:					
At the end of the course, learners will be able to					
CO2: Evaluate various scheduling algorithms and process synchronization.					
CO3 : Compare and contrast various memory management schemes					

CO5: Compare iOS and Android Operating Systems.

TEXT BOOKS:

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts"ll, 10th Edition, John Wiley and Sons Inc., 2018.
- 2. Andrew S Tanenbaum, "Modern Operating Systems", Pearson, 5th Edition, 2022 New Delhi
- 3. William Stallings, "Operating Systems: Internals and Design Principles", Seventh Edition, Prentice Hall,2011.

- 1. Andrew S.Tanenbaum,"Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- 2. D M Dhamdhere, "Operating Systems: A Concept-based Approach", Second Edition, Tata McGraw-Hill Education, 2007.
- 3. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill EducationII,1996.

21AD203 DATA STRUCTURE DESIGN USING PYTHON	L	Т	Ρ	С	
21AD203	DATA STRUCTURE DESIGN USING FITTION	3	0	0	3
COURSE	DBJECTIVES:				
The main c	bjectives of this course are:				
• To	create and use classes, objects, methods, and inheritance in Python.				
• To :	store and manipulate data using lists, dictionaries, and regular expressions i	n Py	thon.		
• To	earn about the Arrays and Linked list data structures in Python.				
• To	implement Stack and Queues in Python				
• To	Perform Search operation in Graphs and Trees.				
UNIT-I	OOPS CONCEPTS				9
Class, obje	ct, constructors, types of variables, types of methods. Inheritance: single, mu	ıltiple	e, mu	ulti-le	evel,
hierarchica	I, hybrid, Polymorphism: with functions and objects, with class methods,	with	inhe	erita	nce,
Abstraction	abstract classes.				
					0
UNIT II Definition	DATA STRUCTURES	C+r	Lotur		9 Liet
	Linear Data Structures, Non-Linear Data Structures, Python Specific Data	inne		es.	LISI,
Ripory Soo	rch Sorting Rubble Sort Selection Sort Insortion Sort Morge Sort Ouick	Sort		arcn	anu
Dinary Sea	ren, Solding - Bubble Solt, Selection Solt, Insertion Solt, Merge Solt, Quick	50n.			
UNIT-III	ARRAYS&LINKED LIST				9
Arrays - Ov	verview, Types of Arrays, Operations on Arrays, Arrays vs List. Linked Lists	– Im	plem	enta	ation
of Singly Li	nked Lists, Doubly Linked Lists, and Circular Linked Lists.				
UNIT-IV	STACK&QUEUES				9
Stacks - O	verview of Stack, Implementation of Stack (List & Linked list), Applications of	Sta	ck		_
Queues: C	overview of Queue, Implementation of Queue (List & Linked list), Applica	tions	of	Que	ues,
Priority Qu	eues.				
UNIT-V	GRAPHS&TREES				9
Graphs -Int	roduction, Directed vs Undirected Graphs, Weighted vs Unweighted Graphs,	Rep	resei	ntati	ons,
Breadth Fi	rst Search, Depth First Search. Trees - Overview of Trees, Tree Terminolo	gy, E	Binar	y Tr	ees,
Tree Trave	rsals, Binary Search Trees, AVL Trees.				
	τοτ	<u> </u>	15 PI	FRIC	ODS
COURSE	DUTCOMES:				
At the end	of the course. learners will be able to				
CO1: Inter	pret the concepts of Object-Oriented Programming as used in Python.				
CO2: Imple	ement Searching and sorting in Python.				
CO3: Ident	ify the operation of Array and Linked list in Python.				
CO4: Dem	onstrate the applications of Stack and Queues in Python.				
CO5: Repr	esent the searching algorithms in Graphs and Trees in Python.				

Г

TEXTBOOKS:

- 1. Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser, "Data Structures and Algorithms in Python" (An Indian Adaptation), Wiley, Second Edition, 2021.
- 2. Dr. Basant Agarwal, Benjamin Baka, "Hands-On Data Structures and Algorithms with Python: Write complex and powerful code using the latest features of Python 3.7", Packet Publishing, 2nd Edition, 2018.
- 3. Narasimha Karumanchi, "Data Structures and Algorithmic Thinking with Python", Kindle Edition, First Edition, 2015.

- 1. R. Nageswara Rao, "Core Python Programming", Dreamtech Press, Second Edition, 2023
- 2. Lee, Kent D., Hubbard, Steve, "Data Structures and Algorithms with Python" Springer, First Edition 2015.
- 3. Rance D. Necaise, "Data Structures and Algorithms Using Python", John Wiley & Sons, First Edition, 2011.

21AD205	PRINCIPLES OF ARTIFICIAL INTELLIGENCE	L	Т	Ρ	С
		3	0	0	3
	DBJECTIVES:				
The main objectives of this course are:					
• To identify the basic concepts and principles of artificial intelligence and intelligent systems.					
 To develop intelligent agents that can make decisions in uncertain environments. 					
• To s	solve the search algorithms for real-world problems.				
• Tor	nake use of knowledge representation systems for real-world problems.				
• To b	build machine learning algorithms to real-world problems.				
UNIT-I	INTRODUCTION TO AI AND INTELLIGENT SYSTEMS				9
Definition,	Scope, and History of AI-Turing Test and its Implications, Intelligent	Age	ents	and	their
Classification	ons, Structure of Intelligent Agents, Applications of Intelligent Systems.				
UNIT-II	PROBLEM SOLVING				9
Problem R	epresentation and State-Space Search - Uninformed Search Algorithms	- BF	S, D	FS,	UCS,
Informed S	earch Algorithms - A* Algorithm and Heuristics.				
UNIT-III	SEARCH IN COMPLEX ENVIRONMENTS				9
Adversarial	Search - Games, Optimal Decisions in Games, The Minimax Algorithm,	Alph	a-Be	taPru	uning,
and Constra	aint Satisfaction Problems (CSP), Backtracking Search for CSPs.				
UNIT-IV	KNOWLEDGE REPRESENTATIONAND REASONING				9
Proposition	al and Predicate Logic, Resolution and Inference Rules, Semantic Netw	vorks	s and	d Fra	ames,
Ontologies	and Knowledge Graphs.				
UNIT-V	MACHINE LEARNING				9
Introduction	to Machine Learning and its Types, Supervised Learning - Regress	sion,	Clas	ssific	ation,
Unsupervis	ed Learning - Clustering, Dimensionality Reduction.				
	тс	TAL	: 45	PER	IODS
COURSE C	OUTCOMES:				
At the end	of the course, learners will be able to				
CO1: Build	artificial intelligence techniques to solve real-world problems.				
CO2: Make	use of search algorithms to solve problems in a state-space.				
CO3: Selec	t adversarial search techniques to make optimal decisions in games.				
CO4: Cons	truct knowledge representation in propositional and predicate logic.				
CO3. Child					
TEXTBOO	<s:< td=""><td></td><td></td><td></td><td></td></s:<>				
1. Stuart F	Russell and Peter Norvig, "Artificial Intelligence – A Modern Approach", 4 th E	ditio	n,		
Pearsor	Education, 2021.				
2. Ethem /	Alpaydin, "Introduction to Machine Learning", 4thEdition, MIT Press, 2020.				
3. Saikat I	Dull, S. Chandramouli, Das, "Machine Learning",1 st Edition, Pearson,2018.				
REFEREN	ICES:				
1. Deepak	Khemani, "Artificial Intelligence", 2 nd Edition, TataMcGrawHillEducation, 201	3.			
2. Kevin N	ight, Elaine Rich, and Nair B., "Artificial Intelligence", 1st Edition, McGrawHill	,2008	3.		
3. Patrick	I.Winston, "ArtificialIntelligence", 3 rd Edition, PearsonEducation, 2006.				
	-				

21AD206	SOFTWARE ENGINEERING PRINCIPLES AND DESIGN	L	Т	Р	С
		2	0	2	3
COURSE	DBJECTIVES:				
• To	earn the concepts of software process.				
• To <u>:</u>	gain knowledge about analysis and design.				
• To a	acquire knowledge on developing UML diagrams.				
• To	know about software testing and project execution.				
• To	earn about agile development methodology.				
UNIT-I	SOFTWARE PROCESS AND DEVELOPMENT				6
Software e	ngineering concepts – Development activities – Software lifecyc	le m	nodels	s –Cla	assical
waterfall – I	terative waterfall – Prototyping – Evolutionary –Spiral – Win Win Spira	al mo	odel –	Proto	otyping
model –Inc	rement model – RAD model – Specialized process models – The ra	tiona	ıl unifi	ed pr	ocess
UNIT-II	SOFTWARE REQUIREMENTS ANALYSIS, DESIGN CONCEPTS PRINCIPLES	AN	D		6
Software Requirement Analysis & Design - Functional and non-functional – Software requirem					ement
document	- Requirement engineering process - Feasibility studies - Func	tiona	al and	l beha	avioral
models - S	tructured analysis and data dictionary-Design process and concept	ots–D	Desigr	n heui	ristic –
Architectur	al design – Mapping data flow into a software architecture –Data de	esigr	n – Us	ser int	erface
design – R	eal time software design.				
UNIT-III	OBJECT ORIENTED ANALYSIS AND DESIGN				6
Introduction	n to OOAD with OO Basics — Unified Process - UML Diagrams	– S	tatic,	Dyna	mic &
Implementa	ation Diagrams.				
UNIT-IV	SOFTWARE TESTING & PROJECT MANAGEMENT				6
Taxonomy	of software testing - Types of S/W testing - Black box testing -	- Wł	nite bo	ox tes	sting –
Regressior	testing – Unit testing – Integration testing – Validation testing – Syst	em t	esting	g – So	ftware
cost estima	ation – Function point models – COCOMO Model – Delphi metho	d –P	roject	: plan	ning –
Project sch	eduling – Risk management – Software configuration management.				
UNIT-V	AGILE SOFTWARE DEVELOPMENT AND SCRUM FRAMEWOR	K			6
Fundamen	tals of Agile Process Methods – Values – Principles – stakeholders	– C	haller	iges -	- Agile
Manifesto a	and Principles - Agile project management – Design and developm	nent	practi	ces ir	n Agile
projects -	User Stories – Agile Testing – Scrum Framework - Scrum Practice	s – /	Applyi	ng So	rum –
Need of sc	rum – working of scrum – Advanced Scrum Applications – Scrum a	nd th	ne Org	ganiza	ation –
scrum valu	es – Scrum case study – Tools for Agile project management.				
			30 I	PERIC	DDS

PRACTICAL EXERCISES:	30 PERIODS
L Do the following everying for any one project given in the list of complement	
1. Do the following exercises for any one project given in the list of sample pro	Sjects.
Development of problem statement. Proparation of Software Requirement Specification Decument. Design	Documents and
Z. Preparation of Software Requirement Specification Document, Design Testing Phase related documents (Test Cases).	Documents and
3. Identify use cases and develop the Use Case model.	
4. Identify the conceptual classes and develop a Domain Model and also de	erive a Class
Diagram.	
5. Using the identified scenarios, find the interaction between objects and r	epresent them
using UML Sequence and Collaboration Diagrams.	
6. Draw relevant State Chart and Activity Diagrams for the same system.	
II. Use agile methodology and scrum framework for any one project (Write Us	er Stories and
develop sprints)	
Sample Projects:	
Online Course Registration	
Airline/Railway reservation system	
e-book management system	
Recruitment system	
Passport automation system.	
тот	AL: 60 PERIODS
COURSE OUTCOMES:	
At the end of the course, learners will be able to	
CO1: Apply software engineering principles for software development	
CO2: Use software requirement specification and design software according to the	
specification.	
CO3: Use UML diagram to design project deliverables.	
CO4: Apply different testing and manage the software.	
CO5: Implement Agile Scrum for software projects	
TEXTBOOKS:	
1. Roger S. Pressman, "Software Engineering: A practitioner's Approach",	McGraw-Hill
International Edition, Seventh Edition, 2014.	

- 2. Craig Larman, "Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design and Iterative Development", Third Edition, Pearson Education, 2005.
- 3. Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", Pearson Education Limited, First Edition, 2013

- 1. Martin Fowler, —UML Distilled: A Brief Guide to the Standard Object Modeling Languagell, Third edition, Addison Wesley, 2003.
- 2. Ian Sommerville, "Software engineering", Pearson Education Limited, Ninth Edition, 2012
- 3. James F.Peters and Witold Pedrycz, "Software Engineering, An Engineering Approach", Wiley-India, Third Edition, 2007

		L	Т	Р	С
21AD202	OPERATING SYSTEM PRINCIPLES LABORATORY	0	0	4	2
COURSE	OBJECTIVES:				
The mair	objectives of this course are:				
• To	install windows operating systems.				
• To	understand the basics of UNIX command and shell programming.				
• To	implement Deadlock Avoidance and Deadlock Detection Algorithms				
• To	implement Page Replacement Algorithms				
• To	implement various memory allocation methods.				
• To	be familiar with File Organization and File Allocation Strategies				
	LIST OF EXPERIMENTS				
1. Ir	stallation of windows operating system				
2. III	ustrate UNIX commands and Shell Programming				
3. P	ocess Management using System Calls : Fork, Exit, Getpid, Wait, Close				
4. W	rite C programs to implement the various CPU Scheduling Algorithms				
5. III	ustrate the inter process communication strategy				
6. In	plement mutual exclusion by Semaphore				
7. W	rite C programs to avoid Deadlock using Banker's Algorithm				
8. W	rite a C program to Implement Deadlock Detection Algorithm				
9. V	rite C program to implement Threading				
10. In	plement the paging Technique using C program				
	TC	ΙΑΤΟ	_ :60	PERI	ODS
COURSE	OUTCOMES:				
At the en	d of the course, learners will be able to				
С	D1: Define and implement UNIX Commands.				
С	D2 : Compare the performance of various CPU Scheduling Algorithms.				
С	D3 : Compare and contrast various Memory Allocation Methods.				
С	D4: Define File Organization and File Allocation Strategies.				

CO5: Implement various Disk Scheduling Algorithms.

21AD204 DATA STRUCTURE DESIGN USING PYTHON LABORATOR		L	Т	Ρ	С
	DATA STRUCTURE DESIGN USING PTTHON LABORATORY	0	0	4	2
COURSE	DBJECTIVES:				<u>.</u>
The main o	bjectives of this course are:				
• To u	inderstand the Oops concept in Python				
• To ir	nplement search and sorting algorithms in Python				
• To le	earn about the Linked lists and arrays in Python				
• To ir	nplement Stack and Queue operations in Python				
• To d	lefine various Tree and Graph structures in Python.				
	LIST OF EXPERIMENTS				
11. Wri	te a program to implement Inheritance.				
12. Wri	te a program for Linear Search and Binary search.				
13. Wri	te a program to implement Bubble Sort and Selection Sort.				
14. Wri	te a program to implement Merge sort and Quick sort.				
15. Wri	te a program to implement Stacks and Queues.				
16. Wri	te a program to implement Singly Linked List.				
17. Wri	te a program to implement Doubly Linked list.				
18. Wri	te a program to implement Circular Linked list.				
19. Wri	te a program to implement Binary Search Tree.				
20. Wri	te a program to implement BFS & DFS.				
		IOTAL	:60	PERI	ODS
COURSE	DUTCOMES:				
At the end	of the course, learners will be able to				
CO1: Dem	onstrate the Oops Concepts.				
CO2: Inter	oret the data structure concepts.				
	ement Array and Linked list operations.				
CO4. Wake	e use of Stack and Queue in real world applications.				

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SEMESTER- I	V
-------------	---

		L	Т	Ρ	С
21MA208	PROBABILITY AND STATISTICS	3	2	0	4
0011005	B.Tech. AI & DS	Ŭ	-	Ŭ	
COURSE	DBJECTIVES:				
	bjectives of this course are.	al ta		•	
• 111	is course aims at providing the required skill to apply the statistic		ois ii	n	
enç	ineering problems.				
• 10	ntroduce the basic concepts of probability and random variables.				
• 10	ntroduce the basic concepts of two-dimensional random variables.				
• To	acquaint the knowledge of testing of hypothesis for small and large san	nples	whicl	n	
pla	vs an important role in real life problems.				
• To	ntroduce the basic concepts of classifications of design of experiments	which	play	S	
ver	/ important roles in the field of agriculture and statistical quality control.				
	PROBABILITY AND RANDOM VARIABLES				12
Probability	- The axioms of probability - Conditional probability - Baye's theo	rem -	- Disc	crete	and
continuous	random variables – Moments – Moment generating functions –	Bino	mial.	Pois	son.
Geometric	Uniform, Exponential and Normal distributions.		,		,
	TWO - DIMENSIONAL RANDOM VARIABLES				12
Joint distri	putions – Marginal and conditional distributions – Covariance – Co	rrelat	ion a	nd li	near
regression	- Transformation of random variables - Central limit theorem (for	r ind	epen	dent	and
identically	distributed random variables).		•		
	TESTING OF HYPOTHESIS				12
Sampling of	listributions - Estimation of parameters - Statistical hypothesis - Large	samp	le tes	sts ba	ased
on Normal	distribution for single mean and difference of means -Tests based on	t, Chi	-squa	are a	nd F
distribution	s for mean, variance and proportion - Contingency table (test for indep	ender	nt) - G	Goodi	ness
of fit.			,		
UNIT IV	DESIGN OF EXPERIMENTS				12
One way a	nd Two way classifications - Completely randomized design – Random	ized l	block	desi	gn –
Latin squa	e design - 2² factorial design.				-
	STATISTICAL QUALITY CONTROL				12
Control cha	arts for measurements (X and R charts) – Control charts for attributes (p	, c an	nd np	char	ts)
 Toleranc 	e limits - Acceptance sampling.		-		-
	ТО	TAL:	60 P	ERIC	DS
COURSE	DUTCOMES:				
At the end	of the course, learners will be able to				r
CO1: Unde	erstand the fundamental knowledge of the concepts of probability and h	ave k	nowle	edge	of
stan	uaru uisunuulons which can describe real life phenomenon.		nd an	alv in	
endi	neering applications	es al	iu ap	JIYIII	
D T! -!		CDERT			
B.Tech.	I & DS BoS Chairman R-2021(CHOICE BASED	CREDI	T SYST	EM)	

CO3: Apply the concept of testing of hypothesis for small and large samples in real life problems.

- **CO4:** Apply the basic concepts of classifications of design of experiments in the field of agriculture and statistical quality control.
- **CO5:** Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

TEXTBOOKS:

- 1. Johnson. R.A., Miller. I.R and Freund. J.E, & quot; Miller and Freund's Probability and Statistics for Engineers & quot;, Pearson Education, Asia, 9 th Edition, 2016.
- 2. Milton. J. S. and Arnold. J.C., & quot; Introduction to Probability and Statistics & quot;, Tata Mc Graw Hill, 4th Edition, 2007.
- 3. John E. Freund, & quot; Mathematical Statistics & quot;, Prentice Hall, 5th Edition, 1992.

- 1. Gupta. S.C. and Kapoor. V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & amp; Sons, New Delhi, 12 th Edition, 2020.
- 2. Devore. J.L., & quot; Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8 th Edition, 2014.
- 3. Ross. S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 5 th Edition, Elsevier, 2014.
- 4. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., " Schaum's Outline of Theory and Problems of Probability and Statistics & quot;, Tata McGraw Hill Edition, 4 th Edition, 2012.
- 5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., & quot; Probability and Statistics for Engineers and Scientists & quot;, Pearson Education, Asia, 9 th Edition, 2010.

21AD207 ANALYSIS OF ALGORITHMS	L	т	Р	С
	– २	0	0	3
	3	U	U	5
COURSE OBJECTIVES:				
The main objectives of this course are:				
 To understand and apply the algorithm analysis techniques on searching and sort 	ing a	gorit	hms	
 To critically analyze the efficiency of graph algorithms 				
 To understand different algorithm design techniques 				
 To solve programming problems using state space tree 				
To understand the concepts behind NP Completeness, Approximation algorithms	and			
randomized algorithms.				-
				9
Algorithm analysis: Time and space complexity - Asymptotic Notations and its properties	s Bes	t cas	se, W	/orst
case and average case analysis – Recurrence relation: substitution method - Lower be	bund	S —S6	earcr	ning:
Inear search, binary search and Interpolation Search, Pattern search: The naive string r	natcr	ing a	algor	ithm
				0
Croph algorithms: Banragantations of graphs. Craph traversal: DESRESapplication	<u> </u>	`onn	o otiv (9
strong connectivity, bi-connectivity - Minimum spanning tree: Kruskal's and Prim's algorit	15 - C	Short	ectiv	ny, Nath:
Bellman-Ford algorithm - Dijkstra's algorithm - Floyd-Warshall algorithm Network flow		w ne	twor	ke -
Ford-Fulkerson method – Matching: Maximum bipartite matching	. 110	vv ric		N3 -
UNIT-III ALGORITHM DESIGN TECHNIQUES				9
Divide and Conquer methodology: Finding maximum and minimum - Merge sort - Q	uick	sort	Dvna	amic
programming: Elements of dynamic programming - Matrix-chain multiplication - Mu	lti sta	age	grapl	h —
Optimal Binary Search Trees. Greedy Technique: Elements of the greedy strategy	Act	vity-	seled	ction
problem Optimal Merge pattern Huffman Trees		-		
UNIT-IV STATE SPACE SEARCH ALGORITHMS				9
Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem	– Gr	aph (colou	uring
problem Branch and Bound: Solving 15-Puzzle problem - Assignment problem - Kn	apsa	ck P	roble	em -
Travelling Salesman Problem				-
UNIT-V NP-COMPLETE AND APPROXIMATION ALGORITHM				9
I ractable and intractable problems: Polynomial time algorithms – Venn diagram replace interaction of the second ND completeness. Bin Decking problem. Droblem reduced	rese	ntati	on —	
algonithms - NP-hardness and NP-completeness – Bin Packing problem - Problem reduce	liooti	135	r = 30	
testing - randomized quick sort - Finding kth smallest number	licali	511 -	pnin	anty
	· 10	45 P	FRIC	วกร
COURSE OUTCOMES:				
At the end of the course, learners will be able to				
CO1 : Analyze the efficiency of algorithms using various frameworks				
CO2 : Analyze the efficiency of algorithms to solve problems and analyze their officiency.				
CO2 . Apply graph algorithm design techniques like divide and conquer, dynamic progra	m m i i		. d	
COS. Make use of algorithm design techniques like divide and conquer, dynamic progra		ig ar	ia	
greedy techniques to solve problems				
CO4: Use the state space tree method for solving problems.				
CO5 : Solve problems using approximation algorithms and randomized algorithms				
EXT BOOKS:				
1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "I	ntrod	uctic	n to	
Algorithms", 3rd Edition, Prentice Hall of India, 2009.				
2. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran "Computer Algorithms/C+	+" O	ient		
Blackswan, 2nd Edition, 2019.				

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", 3rd Edition, Pearson Education, 2012.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Reprint Edition, Pearson Education, 2006.
- 3. S. Sridhar, "Design and Analysis of Algorithms", Oxford university press, 2014.

		I	т	D	<u> </u>
21AD208	DATABASE DESIGN AND ENGINEERING	3	0	0	3
COURSE	OBJECTIVES:	•	•	•	
The main o	objectives of this course are:				
• To	design database using ER model and SQL.				
• To	apply functional dependencies and normalization concept in real time proble	ems.			
• To	acquire knowledge on transactions, file organization and query processing.				
• To	understand basic data engineering concepts.				
• To	analyze the principle of data architecture and storage.				
UNIT-I	INTRODUCTION AND DATABASE DESIGN				9
Database	System – Purpose – Views of Data – System Structure - Models – Relationa	I Mo	del –	ER	Model
- SQL Fun	damentals & Features.				
UNIT-II	NORMALIZATION				9
Functional	Dependencies – Non-loss Decomposition – First, Second, Third Normal Fo	orms	– De	epen	dency
Preservatio	on – Boyce/Codd Normal Form – Multi-valued Dependencies & Fourth N	lorma	al Fo	orm -	- Join
Dependen	cies & Fifth Normal Form.				
UNIT-III	TRANSACTION AND IMPLEMENTATION TECHNIQUES				9
Transactio	n – ACID properties – Schedules – Serializability – Concurrency Control –	Loc	king	Prote	ocol –
Two Phase	e Locking – Deadlock - RAID – File Organization - Indexing and Hashing - Q	uery	Pro	cessi	ng.
UNIT-IV	FUNDAMENTALS OF DATA ENGINEERING				9
Fundamen	tals Data Engineering, Data Engineering Lifecycle, Data Engineering vs. I	Data	Scie	ence,	Data
Engineerin	g Skills and Activities, Business and Technical Responsibilities.				
UNIT-V	DATA ARCHITECTURE AND STORAGE				9
Principles	of Data Architecture, Types of Data Architecture -Data Warehouse, Data L	.ake,	Clo	ud ve	s. On-
Premises S	Storage, Data Storage Systems, Distributed Storage, Object Storage, Data	Platf	orms	s and	Data
Catalogs.					
	TC	TAL	: 45	PER	IODS
COURSE	DUTCOMES:				
At the end	of the course, learners will be able to				•
CO1: Ident	ity entities, attributes and their relationship, prepare ER model and use basi	ICS O	SQ	L to \	vrite
	/. functional dependencies, normal forms to design and normalize a database				
CO3: Sum	marize interleaved operations of transaction, file organization strategies, pa	rsina	and	exec	cution
of SC	L Statements.	- 3			
CO4: Unde	erstand and summarize basics of data engineering concepts.				
CO5: Anal	yze the principles governing Data Architecture and Storage in different appli	catio	ns.		
IEXIBOO		" 0			
1. Abrahar	n Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concept	s", S	ever	ith E	dition,
			000		
2. Joe Reis	s, Matt Housley, "Fundamentals of Data Engineering", 1° Edition, O'Relly M	edia	, 202	.2.	
3. Brian Sr	live, Data Engineering, First Edition, Kindle Edition, 2013.				
REFFRFN	CES:				
1. Paul Cri	ckard. "Data Engineering with Python". First Edition. Packet. 2020				
2. Hamid I	Mahmood Qureshi, Hammad Sharif, "Snowflake Cookbook: Techniques f	or b	uildir	na m	odern
cloud da	ta warehousing solutions". 1st Edition. Kindle Edition. 2021.			5	
3. Andreas	Kretz, "The Data Engineering Cookbook". The Data Engineering Academy	201	9.		
	,				

B.Tech.Al & DS

21AD210	COMPUTER NETWORKING PRINCIPLES	L	Т	P	C 3		
COURSE	OBJECTIVES:	5	U	U	5		
The main of	objectives of this course are:						
To understand the basic fundamental concepts, functionalities of physical layer							
	 To understand the functionalities of data link layer. 						
	• To learn the concepts in transport layer and application layer.						
	• To learn the fundamentals of cryptography.				.,		
	• To understand the application layer security standards and	real	time	sec	urity		
					9		
Data Comr	nunication – Networks – Network Types – TCP/IP model – OSI model	– Lav	ers –	Phy	sical		
layer –Top	ology – Transmission media – Switched Communications Networks –	Circu	iit Sv	vitchi	ng –		
Packet Sw	itching – Comparison of Circuit Switching and Packet Switching.				•		
					•		
UNIT II Error Doto	DATA LINK AND NETWORK LAYER	ntrol	mod	anio	9		
Sliding Wir	idow Protocol – GoBack– N – Selective Repeat – Multiple access Alok	าแบเ งล – S	Intte		ha –		
CSMA. CS	MA/CD – Multiple Access Networks (IEEE 802.3). Token Ring(IEEE 8	302.5)	and	Wire	eless		
Networks (IEEE 802.11, 802.15) – IP addressing – Internet Protocol – ARP – RA	RP –	IGM	> _ I(CMP		
– Routing a	algorithms – Link State Routing – OSPF – Distance Vector Routing – F	lP−Ι	DHC	Р			
					0		
TCP and I	IDP_ Congestion Control_Effects of Congestion_Traffic Management	t_TCF		naes	9 tion		
Control–Co	progestion Avoidance Mechanisms-Queuing Mechanisms- QoS Par	amete	ers -	Dom	nain		
Name Syst	em (DNS) – E–mail – SMTP – IMAP – POP3 – File Transfer Protocol	– HTT	P –	SNM	P.		
UNIT IV	NETWORK SECURITY				9		
OSI Secur	ity Architecture – Security Attacks, Services, Mechanism, Model – Security Attacks, Services, Mechanism, Mechanism, Model – Security Attacks, Services, Mechanism, Mechanism, Model – Security Attacks, Services, Mechanism, Mechanism, Mechanism, Mechanism, Security Attacks, Services, Mechanism, Mechanism, Mechanism, Mechanism, Mechanism, Mechanism, Security Attacks, Services, Mechanism, Security Attacks, Services, Mechanism, Me	ymme		Jiphe	ers –		
Distribution	h and Transposition Techniques - Steganography – Block Cipne h – Public Key Cryptography and RSA – Key Management - Diffie-Hell	r and man l	UE (av F	3 — Ivcha	ney		
– Message	Authentication and Hash Functions – SHA – Digital Signature – DSS				inge		
	3 1 1 1						
UNIT V	APPLICATION LAYER SECURITY AND PRACTICES				9		
Electronic	Mail Security: Pretty Good Privacy, S/MIME - Firewalls and Intrusion	Detec	tion	Syste	ems:		
Intrusion L	Petection Password Management, Firewall Characteristics Types of awall Location and Configurations, Plackaboing, Cloud Security and L	Firev	valls,	⊢ıre	ewall		
Dasiliy, Fil	ewail Location and Configurations - Blockchains, Cloud Security and it	JISE	Junty	•			
	TC	TAL:	45 P	ERI	ODS		
COURSE	OUTCOMES:						
At the end	of the course, learners will be able to						
CO1: Outl	ne OSI model and the features of physical layer.			4 m m			
COZ: Mak	e use of data link layer reatures to calculate error codes and apply pro	NOCOR	5 101	ine g	iven		
CO3: Com	pare congestion effects in a network and understand the concepts of	applic	cation	า			
laye	r protocols.	~~~~~~					
CO4: Illus	trate examples for cryptography techniques.						
CO5: App	y security practices for real time applications.						
TEXT BOO	DKS:						
1. Be	hrouz A. Foruzan, "Data communication and Networking", Tata McGra	w-Hil	, Fift	h Edi	tion,		
20	13				-		
B.Tech.A	A & DS BoS Chairman R-2021(CHOICE BASE)	D CRED	IT SYS	STEM))		

- 2. Cryptography and Network Security: Principles and Practice, 6th Edition, William Stallings, 2014, Pearson, ISBN 13:9780133354690.
- 3. Computer Networks -- Andrew S Tanenbaum, 4th Edition, Pearson Education, 2018.

- 1. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Morgan Kauffmann Publishers Inc., Third Edition, 2011
- 2. William Stallings, "Data and Computer Communication", Pearson Education, Sixth Edition, 2000.
- 3. Network Security: Private Communications in a Public World, M. Speciner, R. Perlman, C. Kaufman, Prentice Hall, 2002.

2140212	PRINCIPLES OF MACHINE LEARNING	L	Т	P	C		
		3	0	0	3		
The main o	JBJECTIVES: biectives of this course are:						
To understand the concents of machine learning							
• To (explore the different supervised learning techniques						
• To l	earn different aspects of unsupervised learning algorithm						
• To l	earn the role of probabilistic methods for machine learning						
• To (understand the basic concepts of neural networks and deep learning						
UNIT-I	INTRODUCTION TO MACHINE LEARNING				9		
Introduction	n to Machine Learning (ML), Essential Concepts of ML, Types of Learning,	Mad	chine	Lear	ning		
Methods ba	ased on Time, Dimensionality, Linearity and Non Linearity, Early Trends in	Mac	hine l	_ear	ning,		
Data Unde	rstanding Representation and Visualization.						
					٩		
Linear Nor	n-Linear Multi-Class and Multi-Label Classification Support Vector Machin	e D	ecisio	n Tr	ees.		
ID3. Class	ification and Regression Trees (CART). Regression: Linear Regressio	n. N	1ultipl	e Li	near		
Regression	, Logistic Regression.	,		-			
UNIT-III	UNSUPERVISED LEARNING				9		
Clustering,	Nearest Neighbor Models, K-Means, Hierarchical Clustering, KD Tre	es. I	Dime	nsior	ality		
Reduction,	Linear Discriminant Analysis, Principal Component Analysis, Factor Ana	lysis	, Inde	epen	dent		
Componen	t Analysis.						
UNIT-IV	LEARNING METHODS				9		
Introduction	n, Naïve Bayes Algorithm, Maximum Likelihood, Maximum Apriori, Bayesia	n Be	elief N	letwo	orks,		
Probabilisti	c Modelling of Problems, Inference in Bayesian Belief Networks, Probability	Dens	ity Es	stima	tion,		
Sequence	Models, Markov Models, Hidden Markov Models.						
UNII-V	NEURAL NETWORKS AND DEEP LEARNING	ord	Notur	orle [9		
Propagatio	works, Biological Molivation, Perception, Multi-Layer Perception, Feed Form	aru arnin		JIK, E nvoli	Jack		
Neural Net	works. Recurrent Neural Networks. Use Cases.		y, co				
	ТО	TAL	: 45 F	ERI	ODS		
COURSE C	DUTCOMES:						
At the end	of the course, learners will be able to						
CO1: Expla	ain the basic concepts of machine learning.						
CO2: Build	supervised learning models.						
CO3: Cons	truct unsupervised learning algorithms.						
	ment Probabilistic Modelling for an application and analyze the results.						
CO3. Unde	istand the functions of heural network and deep learning.						
TEXTBOO	KS:						
1. Eth	em Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition,	2020).				
2. Ton	n Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 2017						
3. Ste	ohen Marsland, "Machine Learning: An Algorithmic Perspective, "Second I	Editio	on", C	RC			
Pre	ss, 2014.						

- 1. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", Second Edition, MIT Press, 2018.
- 2. Jason Bell, —Machine learning Hands on for Developers and Technical Professionalsll, First Edition, Wiley, 2014.
- 3. Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datall, First Edition, Cambridge University Press, 2012.

			L	Т	Ρ	С
21/	AD209	DATABASE DESIGN AND ENGINEERING LAB	0	0	4	2
COUR	SE OBJE	CTIVES:				
The m	ain objecti	ves of this course are:				
•	To gain k	nowledge on basic commands of database.				
•	To execu	te constraints, views, sequence and synonyms.				
•	To under	stand execution of nested queries, procedures and functions.				
•	To be fan	niliar with front end tool and database connectivity.				
•	To create	simple datasets and implement visualization.				
		LIST OF EXPERIMENTS				
1.	Database	Development Life cycle:				
	• Pi	oblem definition and Requirement analysis				
	• S	cope and Constraints				
2.	Implemer	t the database using SQL Data Definition with Constraints.				
3.	Query the	e database using SQL Manipulation and Control Statements.				
4.	Implemer	ntation Views, Sequences and Synonyms.				
5.	Query the	e database using Set Operators, Nested Queries and Join Queries.				
6.	Querying	Managing the database using SQL Programming				
	- Stored I	Procedures/Functions				
	 Constra 	ints and security using Triggers				
7.	Database	Design using ER Modeling, Normalization and Implementation for any	appl	icatio	on.	
8.	Database	Connectivity with Front End Tools.				
9.	Case Stu	dy using Real Time Application – Collection of data – Create Dataset fo	or the	Арр	licati	on.
10	. Create da	ata visualization for any real time application.				
Hardy	vare: Stan	dalone Desktops				
Softw	are: Oracle	e, NetBeans, VisualStudio, any open source tool for visualization				
		TO'	TAL	:60P	ERIC	DDS
COUR	SE OUTC	OMES:				
At the	end of the	course, learners will be able to				
CO1:	Use DDL,	DML & DCL commands to experiment the creation of database.				
CO2:	Create an	application to execute Views, Sequence and Synonyms.				
CO3:	Test a data	abase application using nested queries and join queries.				
CO4:	Construct	simple codes to execute functions and procedures.				
CO5:	Design an	application using ER diagram, normalization and create simple dataset				

21AD2	211 COMPUTER NETWORKING PRINCIPLES LABORATORY	L	Т	Ρ	С
		0	0	4	2
COURS	E OBJECTIVES:				
Theme	sin chiectives of this course are:				
The ma	an objectives of this course are:				
	o learn network commands and implement now control, error correction mechanis	ins			
	o learn socket programming				
•	o implement and analyze various network protocols				
•	o learn different cipher techniques				
•	o implement the algorithms RSA, Diffie-Hellman and DSS.				
1.	Implement commands like topdump, netstat, ifconfig, nslookup and traceroute, pi	ng ar	nd		
•	traceroute				
2.	Implement error correction technique.				
3.	Implementation of socket programs using TCP & UDP				
4.	Simulation of sliding window protocols				
5.	Implementation of ARP/RARP				
ю. - 7	Implementation of routing protocols			/::	、
1.	Perform encryption, decryption using the following substitution techniques (I) Cea	iser (sipne	≆r, (II)
8	Implement RSA Algorithm				
9.	Implement the Diffie-Hellman Key Exchange algorithm for a given problem.				
10.	Implement the SIGNATURE SCHEME – Digital Signature Standard.				
	тот	AL:6	50 PI	ERIC	DS
COURS	SE OUTCOMES:				
At the	and of the course, learners will be able to				
CO1:	nplement various networking commands				
CO2:	nplement error correction codes				
CO3: 1	mplement network and application layer protocols using sockets.				

CO4: Develop code for classical Encryption Techniques to solve the problems.

CO5: Build cryptosystems by applying symmetric and public key encryption algorithms.
21 4 D 21 3		L	Т	Ρ	С
ZIADZIJ		0	0	4	2
COURSE OBJE	CTIVES:				
The main objecti	ves of this course are:				
To Under	stand the fundamental concepts of Machine Learning and its significar	nce			
To build s	supervised learning models.				
To constr	uct unsupervised learning models.				
To Introd	uce and implement the Naïve Bayes algorithm for probabilistic classific	atior).		
To identif	y the working principles of neural network including the back propagat	on a	lgoriti	nm.	
1. Implemer	nt loading and exploring a machine learning dataset				
2. Demonst	rate various data pre-processing techniques for a given dataset.				
3. Implemer	nt a support vector machine (SVM) model.				
4. Develop	Logistic Regression Model for a given dataset				
5. Develop	Decision Tree Classification model for a given dataset and use it to cla	ssify	a nev	w sar	nple
6. Implemer	nt Naïve Bayes Classification in Python.				
7. Implemer	nt Random Forest ensemble method on a given dataset.				
8. Implemer	nt a principal component analysis (PCA) algorithm.				
9. Implemer	nt a k-nearest neighbors (KNN) classifier.				
10. Build Arti	ficial Neural Network model with back propagation on a given dataset.				
	TC)TAL	. :60F	PERI	ODS
COURSE OUTC	OMES:				
At the end of the	course, learners will be able to				
CO1: Identify an	d apply the appropriate machine learning algorithm for a given problem	۱.			
CO2: Evaluate th	ne Supervised learning models preprocessed through various feature e	engin	eerin	g	
algorithms					
CO3: Implement	and apply dimensionality reduction techniques such as principal complete apply the Naive Rayes algorithm, maximum likelihood, and maximum	oner	it ana	alysis ori	•
estimation	ם מקרוע וויפ ואמועפ סמעפג מוצטוונוווו, ווומגווווטווו ווגפווווטטט, מוט ווומגווווטוו	i a po	JSIEII		
CO5: Understan	d the basic concepts of neural network model and design the same.				

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE SEMESTER- V

21AD301	DEEP LEARNING TECHNIQUES	L	Т	Ρ	С	
		3	0	0	3	
	DBJECTIVES:					
The main c	bjectives of this course are:					
	 To understand the fundamental techniques and principles of Neural Netw 	orks				
	 Identify and apply appropriate deep learning architectures for analyzing th variety of problems. 	ie da	ata f	or a		
	 To analyze deep learning concepts with Convolutional Neural Network ca 	se s	tudi	es		
	 To Implement different deep learning algorithms 					
	 To study of an advanced deep learning technique 					
UNIT-I	INTRODUCTION TO DEEP LEARNING & NEURAL NETWORKS				9	
Historical c	ontext and motivation for deep learning - Fundamentals of Neural Networks	5 - C	omp	arisc	on of	
Biological a	and Artiicial Neurons - Perceptron – Model of Artificial Neuron – Feedforward	neui	al n	etwo	rks -	
Deep netw	orks -Regularizing a deep network, Model Exploration - Hyper parameter tuni	ng.				
UNIT-II	DEEP LEARNING ARCHITECTURES				9	
Machine Le	earning and Deep Learning - Representation Learning - Width and Depth of N	Veur	al N	etwo	rks -	
Activation I	Functions: RELU – LRELU – ERELU -Unsupervised Training of Neural Netv	vork	s - F	₹estr	icted	
Boltzmann	Machines -Auto Encoders - Deep Learning Applications.					
UNIT-III	CONVOLUTIONAL NEURAL NETWORK				9	
Introduction	to convolution neural networks: stacking, striding and pooling -Application	s lik	e im	age,	and	
text classiid	cation - Architectural Overview -Motivation, Layers, Filters, Parameter sharin	g, R	egul	ariza	ition,	
Popular CN	IN Architectures: ResNet - AlexNet – Applications.					
UNIT-IV	SEQUENCE MODELING: RECURRENT NETS				9	
Unfolding of	computational graphs - Recurrent Neural Networks (RNNs), Bidirectional I	RNN	s, E	Incod	der -	
Decoder se	equence to sequence architectures -Deep Recurrent Networks.					
UNIT-V	ADVANCED DEEP LEARNING TECHNIQUES				9	
Deep Belie	f Networks – Deep Boltzman Machine – Deep Associative Memory netwo	orks	– G	ener	ative	
Neural Net	works – Deep fake Technology –Case Study on designing deep learning soluti	ons	for i	denti	fying	
fake finger	prints, fake images and videos.					
	TOI	AL:	45 F	'ERI	ODS	
COURSE O	DUTCOMES					
At end of th	ne course, learners will be able to					
CO1: Dem	onstrate the basic concepts, fundamental learning techniques and layers.					
CO2: Analyze and evaluate, in the context of a case study, the advantages and disadvantages of deep						
learning neural network architectures and other approaches.						
CO4 : Design recurrent neural networks for sequence modeling						
CO5: Build	, train and apply fully connected deep neural networks.					
TEXT BOC	DKS:					
1.	Simon Haykin, "Neural Networks, A Comprehensive Foundation", 2 nd Edition	, Ad	diso	n We	sley	
Longman, 2001.						

2. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2016.

3. Jeff Heaton, Deep Learning and Neural Networks, Heaton Research Inc,2015.

- 1. Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017
- 2. Cosma Rohilla Shalizi, "Advanced Data Analysis from an Elementary Point of View", 2015.
- **3.** Deng & Yu, "Deep Learning: Methods and Applications", Now Publishers, 2013.

21 4 0 2 0 2			-	D	•		
ZTADJUZ	DATA SCIENCE AND ANALTICS	L 2	1	P 0			
		3	U	U	3		
	bioctives of this course are:						
	nain knowledge in the basic concepts of Data Analysis						
• 10 (and the appoint and types of the application						
• 10 t	understand the concept and types of the analytics						
• 106	explore the skills of Big Data Analytics						
• 10 8	acquire knowledge in data interpretation and visualization techniques						
• To (understand the role of data analytics in Business Intelligence						
UNIT-I	INTRODUCTION TO DATA SCIENCE				9		
Need for da	ata science – benefits and uses – facets of data – data science process – se	etting	the	rese	arch		
goal – retri	eving data – cleansing, integrating, and transforming data – exploratory dat	a an	alys	is –	build		
the models	 presenting and building applications. 						
UNIT-II	FOUNDATION OF DATA ANALYTICS				9		
Introduction	n, Evolution, Concept and Scopes, Data, Big Data, Metrics and Data cl	assif	icati	on,	Data		
Reliability 8	Validity, Problem Solving with Analytics, Different phases of Analytics in the b	ousin	ess	and	Data		
science de	omain, Descriptive Analytics, Predictive Analytics and Prescriptive Ar	nalyti	cs,	Diffe	erent		
Application	s of Analytics in Business, Text Analytics and Web Analytics, Skills for Bu	usine	ss /	Analy	/tics,		
Concepts c	f Data Science, Basic skills required for understanding Data Science.						
UNIT-III	BIG DATA ANALYTICS				9		
Classification	on of Digital Data, Structured and Unstructured Data - Introduction to Big Date	ta: C	hara	cteri	stics		
– Evolutior	– Definition - Challenges with Big Data - Other Characteristics of Data	- Wh	vВ	ig D	ata -		
Traditional	Business Intelligence versus Big Data - Data Warehouse and Hadoop Enviro	onme	ent.	Big	Data		
Analvtics: (Classification of Analytics – Challenges - Big Data Analytics important - Da	ta So	cien	ce -	Data		
Scientist -	Terminologies used in Big Data Environments - Basically Available So	ft St	ate	Eve	ntual		
Consistenc	y - Top Analytics Tools.						
UNIT-IV	EXPLORATORY DATA ANALYSIS				9		
Data visual	zation using matplotlib, seaborn libraries, creating graphs (bar/line/pie/boxplo	ot/his	toar	am. (etc.).		
summarizir	a data, descriptive statistics, univariate analysis (distribution of data), bivaria	ate ar	nalvs	sis (c	ross		
tabs. distrib	putions and relationships, graphical analysis).			(0			
UNIT-V	LEARNING SQL WITH BUSINESS ANALYTICS				9		
Learning S	QL guery structure with examples. Data management and guery system QL	TP ar	nd C		and		
Their data	models. Data warehousing. ETL and data integration Dashboard creation	n us	ina	Tab	eau.		
Concepts o	f Business intelligence (BI), the relevance of BI in application to analytics ind	ustrv	and	diffe	erent		
domains.							
	TO	TAL:	45 F	PERI	ODS		
COURSE C	DUTCOMES						
At end of th	e course, learners will be able to						
CO1 : Apply the skills of data inspecting and cleansing.							
CO2: Classify data analytics techniques and compare with various applications.							
CO3: Understand how various libraries used for data visualization.							
CO4: Hand	le data using primary tools used for data science in Python.						
CO5: Apply	analytics tools for data describing and visualization.						
	(S·						
1. Dav	id Cielen, Arno D. B. Meysman, and Mohamed Ali Introducing Data Science		anni	na			
Publications, 2016, (first two chapters for Unit I)							

- 2. Jesus Rogel-Salazar, 'Advanced Data Science and Analytics with Python',CRC Press Taylor and Francis Group,1st Edition , 2020.
- 3. BIG DATA and ANALYTICS, Seema Acharya, SubhasininChellappan, Wiley publications.2nd Edition, reprint 2019.

- 1. 'Fundamentals of mathematical statistics', S. C Gupta, V.K. Kapoor, Sultan Chand and Sons, 2014.
- 2. 'Elements of Statistical Learning'- Hastie, Tibshirani, Friedman; Springer; 2011.
- 3. 'Data Science from Scratch' Grus; Google Books;2015.

24 4 5 20 4			-	-	•	
21AD304	FULL STACK DEVELOPMENT	L	1	P	0	
		3	0	0	3	
COURSE	JBJECTIVES:					
i ne main c	bjectives of this course are:					
• 10	gain knowledge on Interactive Web Page development.					
• 101	earn about Programming servers using Node.js.					
• To :	study client-side applications with React.					
To understand the Type script and use it.						
• To :	study the deployment of web applications.					
UNIT-I	HTML5, CSS AND JAVASCRIPT				9	
HTML: Tag	s – structuring document – web page –Make it Prettier with CSS–Loading ba	ackgr	oun	d im	ages	
–Organizin	g files. JavaScript – Variables–Controlling HTML and CSS–Organizing JavaS	Script	coc	le	0	
	SERVER SIDE – NODE.JS				9	
Server-Sid	e Action: Node and NPM – JavaScript Runtimes and Building Servers – N	lode	Inst	allati	on –	
NPM – NF	M Commands – Initializing a New NPM/Node Project – Adding Depende	ncies	s — S	Sem	antic	
Versioning	- Node Web Server - Advanced Node and NPM: package.ison - other co	mma	ands	– N	ode:	
Standard M	lodules					
UNIT-III	CLIENT-SIDE – REACT				9	
Client–Side	Adventures: React – History – Components – Props – Memory State – Style -	– Adv	/anc	ed R	eact	
– JSX – Co	mpile JSX – Put It All Together– Default Props – Typing Props – Component	t Life	cycle	е		
UNIT-IV	TYPESCRIPT AND WEBPACK				9	
TypeScript	Jumping into the Deep End – Configuring TypeScript Compilation – Types	: Stri	ng –	- Nur	nber	
– Boolean -	-Arrays – Tuples – Enums– Function – Object – Null, Void, and Undefined – Cu	stom	Тур	e Ali	ases	
– Union Ty	pes – TypeScript == ES6 Features –Advanced TypeScript : Interfaces –	Nam	espa	aces	and	
Modules –	Decorators – Third– Party Libraries – Debugging TypeScript Apps–Webpack	Bun	dle,	and	How	
Do I Make	One–Webpack in detail – Getting Started with Webpack– Using Modules – W	/ither	• Тур	beSc	ript	
UNIT-V	APPLICATION DEPLOYMENT				9	
MailBagSe	rver: Basic Requirements – Setting Up the Project – Starting Point: main.ts–S	erver	Info	.ts-	Гime	
to Send the	e Mail – Time to Get the Mail – Reach Out and Touch Someone – NoSQL	–Ne[DB–	Test	ing–	
MailBagCli	ent: Basic Requirements – Setting Up the Project – Starting Point: index.html	-Re	dux:	mai	n.tsx	
– Configui	ation – Worker for All Seasons – Cavalcade of Components.Docker-	- Co	ntair	ners	and	
Containeriz	ation – Installing Docker– Key Docker Commands – Creating Your Own Ima	ige –	Dep	oloyir	ng to	
Docker Hul	o – Wrapping Up MailBag	-			-	
	TO	ΓAL:	45 F	PERI	ODS	
COURSE (DUTCOMES					
At end of th	ne course, learners will be able to					
CO1: Desig	n Interactive Web Pages using HTML and CSS.					
CO2: Deve	lop server side coding with Node.js					
CO3: Desig	n client side applications with React					
CO4: Use	I ypescript for web programming applications					
LOD: Deve	op the server and client for any applications and deploy using containers					
TEXT BOC	NKS:					
1. Fra	nk Zammetti, "Modern Full–Stack Development", Apress, 2020					

2. BRex van der Spuy "Foundation Game Design with HTML5 and JavaScript" Apress / friends of ED,2012

3. W. P. Petersen, P. Arbenz, "Introduction to ParallelComputing", Oxford University Press, 2004.

- 1. PawełCzarnul, "Parallel Programming for ModernHigh PerformanceComputing ", CRC Press, 2018
- 2. Cyrus Dasadia, AmolNayak, "MongoDB Cookbook", Packt Publishing , 2016
- **3.** KrasimirTsonev, "Node.js by Example", Packt Publishing, 2015

21AD303	DATA SCIENCE	E AND AN	IALYTI	CS LAE	BORATORY	L	Т	Ρ	C
COURSE						0	U	4	2
The main o	oiectives of this course are:								
• To (inderstand the Python Progr	amming p	backage	es Pytho	on, Numpy, Scipy, M	atplotlib,	, Pai	ndas	,
stat	nodels, seaborn, plotly, bok	eh Langu	age.	·					
• Top	repare data for data analysi	s through	unders	tanding	its distribution.				
• To e	expose on data processing u	sing NUM	IPY and	d PAND	AS				
• To a	cquire knowledge in plotting	using vis	sualizati	on tools	S.				
• Tou	inderstand and implement c	assificatio	on and	Regress	sion Model.				
	LIST OF EXPERIMENTS								9
1. Create a	n empty and a full NumPy ar	ray.							
2. Program	to remove rows in Numpy a	rray that c	contains	s non-ni	umeric Values.				
3. Program	to build an array of all comb	inations o	of two N	umPy a	arrays.				
4. Program	to compare two NumPy arra	umey ana	ay.						
6. Write a F	andas program to create an	d displav	a Datal	Frame f	rom a specified diction	onarv da	ita w	/hich	has
the index	labels.					,, ,		-	
7. Write a F	andas program to get the fir	st 3 rows	of a giv	en Data	aFrame.				
8. Write a F	ython program to draw a line	e with suit	table la	bel in th	ie x axis, y axis and a	a title.			
9. Write a F	ython program to draw line	charts of t	the fina	ncial da	ta of Alphabet Inc. b	etween	Octo	ber (3,
2016 to (October 7, 2016.		ad by V	irat Kab	li in lact 25 T 20 mat	choc P	onro	cont	tho
data in t	he form of less than type cur	nulative fi	requenc	rat Kon	hution.		epre	Sem	uie
	45	34	50	75	22				
	56	63	70	49	33				
	08	14	39	86	52				
	92	88	70	56	50				
	57	45	42	12	39				
11. Program	to find the sum and average and sterior	je of n inte	eger nu	mbers.	folomonto				
13 Program	n to plot a normal distribution	n in pytho	n	01 501 0	elements.				
14. Program	n to plot a Correlation and se	catter plot	S.						
15. Prograr	n for Linear Regression and	Logistic F	Regress	ion.					
16. Mini pro	ject on real time application	S	-						
Tools: Pytho	n, Numpy, Scipy, Matplotlib,	Pandas, st	tatmode	els, seab	orn, plotly,bokeh				
						TOTAL:	60 F	PERI	ODS
COURSE C									
At end of the	e course, learners will be ab	le to							
CO1: Deve CO2: Demo	onstrate knowledge of statist	ical data a	analvsis	s techni	aues				
CO3: Exhib	it proficiency to build and as	sess data	a-based	models	5.				
CO4: Demo	onstrate skill in Data manage	ement & p	rocessi	ng task	s using Python.	10,40	4		
will c	ommunicate these solutions	effectivel	ເບ SOIV€ V	e propie	ents in real-world con	iexts an	u		
			J						

TEXT BOOKS:

- Jake VanderPlas, —Python Data Science Handbookl, O'Reilly, 2016.
 Allen B. Downey, —Think Stats: Exploratory Data Analysis in Pythonl, Green Tea Press, 2014.
- 3. Data Science from Scratch: First Principles with Python, Second Edition by Joel Grus, 2019.

		L	Т	Ρ	С
21AD305	FULL STACK DEVELOMENT LABORATORY	0	0	4	2
COURSE OBJ	ECTIVES:			1	<u> </u>
The main object	ctives of this course are:				
To gain	knowledge on Interactive Web Page development				
To lear	n about Programming servers using Node.js				
To stud	y client side applications with React				
To under	erstand the Type script and use it				
To stud	y the deployment of web applications				
	LIST OF EXPERIMENTS				·
1. Des	ign Webpages for any given application				
2. Writ	e Server side programming with Node.js				
3. Per	form Email applications using Nodemailer Module				
4. Writ	e custom applications with Node.js and Mongo DB				
5. Use	React components, JSX, Class, Prop, Events				
6. Writ	e custom applications Forms with React				
7. Use	Type script for enhancing web application				
8. App	ly useCallback, use State, use Effect, useRef Hook of React to applic	ations			
9. Use	Web Pack for Application				
10. Bind	server and client side and deploy as a deliverable application				
11. Dep	loy applications to Docker Hub				
		ΤΟΤΑ	L :60	PER	
COURSE OUT	COMES:				
At the end of th	e course, learners will be able to				
CO1: Design Ir	nteractive Web Pages				
CO2: Develop	server side coding with Node.js				
CO3: Develop	application using Mango DB.				
CO4: Design c	lient side applications with React and Typescript				
CO5: Develop	web applications and deploy.				

21EN301	(Common to all B F /B Tech Programmes)	0	0	2	1		
COURSE	OBJECTIVES'	•					
The main objectives of this course are:							
• To demonstrate communication skills that can lead to improved interpersonal relationships.							
To plan to set and achieve goals with focus.							
• To	organize themselves in work life to face the professional set up with confiden	ce.					
• To	interpret ideas and participate in group discussion with positive attitude.						
• To	develop their confidence and help learners to attend interviews successfully.						
UNIT I	COMMUNICATION AND PROFESSIONAL ETIQUETTES			Т	6		
•Importan	ce and Types of Communication Verbal communication -Presentation	skills	- Non	-Ve	rbal		
communio	ation - Personal Appearance, Posture, Gestures, Facial Expressions, Eye C	onta	ct and	Sp	ace		
Distancing	- Professional Etiquette			•			
	GOAL SETTING AND MOTIVATION				6		
Short term	and Long term Goals- Strategies to set and achieve goals- Motivation						
UNIT III	TIME AND STRESS MANAGEMENT				6		
Importanc	e of Time - Time Management Skills - Sources of Stress - Managing Stress - Ar	alys	is of th	e C	ase		
Studies or	n time and stress management	•					
UNIT IV	GROUP DISCUSSIONS AND POSITIVE ATTITUDE				6		
Group Dis	cussions - Leadership Qualities - Decision Making - Problem Solving - Negotiati	on S	kills - F	os	itive		
Attitude							
UNIT V	RESUME MAKING AND INTERVIEW SKILLS				6		
Preparing	Resume - E - Resume - Covering Letter – Job Application through email - Caree	er Po	rtfolio ·	- Ty	/pes		
of Intervie	ws - Mock Interviews						
	TOI	AL:	45 PE	RIC	DDS		
COURSE	OUTCOMES:						
At the end	of the course, learners will be able to						
CO1: Dei	nonstrate effective communication skills through presentations.						
CO2: Util	ze their knowledge of motivation in setting and achieving goals.						
CO3: Exa	mine time and stress management.						
CO4: For	mulate their ideas into an effective communication in formal contexts.						
CO5: Dev	velop a well-composed resume and face interviews confidently.						
TEXT BO	DKS:						
1. D	hanavel S P, "English and Soft Skills", First Edition , Orient BlackSwan Ltd, Hyd	erab	ad : 20)12.			
2. D	r. Tobin Porterfield & Bob Graham ,"The 55 Soft Skills That Guide Employee a	and C	Organiz	zatio	onal		
S	uccess," Mason – West Publishing House, (January 4, 2018)						
3. P	rashant Sharma, "Soft Skills Personality Development for Life Success, " BPB	Publ	ication	s, r	New		
	elhi, January 2018.						
REFERE							
1. N	Ashraf Rizvi, "Effective Technical Communication," Tata McGraw Hill Educat	ion F	vt. Ltc	1. N	lew		
	Ulli, 2010. Johan Krishna & Maara Banarii "Davalaning Communication Skills" First Editi	ion -	Frinity	Dre			
	ionan misima a weera danerji, Developing Communication Skills, FIRSt Editi Ma	UI,	rinity	rie	:55,		
2 1	Krishnaswami& T. Sriraman "Creative English for Communication "Thi	rd o	dition		vmi		
- 3. K P	ublications Private Limited, 2017.	u e	ullon,	Ld	17111		

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE SEMESTER- VI

21AD306	NATURAL LANGUAGE PROCESSING	L	Т	Ρ	С			
		3	0	0	3			
COURSE O	DBJECTIVES:							
The main objectives of this course are:								
• To ana	understand the fundamentals behind the Language processing and perform v lysis.	vord	leve					
 To examine the NLP models and interpret algorithms for classification of NLP sentences by us both the traditional, symbolic and the more recent statistical approach. To understand the fundamentals of discourse analysis, inference, and knowledge representati 								
• To	understand the morphology, syntax, semantics, and pragmatics of the major l	angu	lage	leve	els			
as o	described algorithmically for use in information retrieval and machine translati	on a	oplic	atio	ns.			
• To l	earn about the uses of natural language processing application and how to u	se fu	Inda	men	tal			
algo	prithms in this area.				-			
UNIT-I					9			
challenges Spell and C	n to various levels of Natural Language Processing (NLP), Ambiguities and in processing various natural languages. Introduction to real life application Grammar Checkers, Information Extraction, Question Answering, and Machin	nd C s of e Tra	omp NLF Insla	suc suc stion	ional h as			
UNIT-II	SYNTAX ANALYSIS				9			
Context Fre	ee Grammars, Grammar Rules for English, Top-Down Parsing, Bottom-Up Para	arsin	g, A	mbig	guity,			
CKY Parsir	ng, Dependency Parsing, Earley Parsing - Probabilistic Context-Free Gramma	ars.						
UNIT-III	SEMANTIC ANALYSIS				9			
Representi Disambigua Text Coher	ng Meaning, Lexical Semantics, Word Senses, and Relation between Sen ation, Word Embeddings, Word2Vec, CBOW, Skip-gram and GloVe, Discour rence, Discourse Structure.	ses, se S	Wo egrr	rd S nenta	ense ation,			
UNIT-IV	LANGUAGE MODELS				9			
The role of	language models, Simple N-gram models, Estimating parameters and smo	othin	g, E	valu	ating			
language n	nodels, Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM)).						
UNIT-V	NLP APPLICATION (Chatbot)				9			
Introduction	n to Chatbot Applications, Retrieval based- Conversation based, Information	Extra	actic	on ar	nd its			
approaches	s, Information Retrieval, Semantic Search and Evaluation, Question Answering	g, Su	mm	ariza	ation,			
Extractive	Vs Abstractive Summarization, Machine Translation.							
			45 5		000			
	10	IAL:	45 H	'EKI	005			

COURSE OUTCOMES:

At end of the course, learners will be able to

CO1: Understand the concept of NLP and illustrate its real time application.

CO2: Illustrate the methods of syntax analysis, such as probabilistic context-free grammars.

CO3: Use semantics and discourse analysis methods to NLP and perform comparative study.

CO4: Compare language modelling techniques based on the structure of the language.

C05: Demonstrate recent applications that use Natural Language Processing approaches.

TEXT BOOKS:

- 1. Daniel Jurafsky and James H. Martin "Speech and Language Processing", 3rd edition, Prentice Hall, 2009.
- 2. C.Manning and H.Schutze, —Foundations of Statistical Natural Language Processingll, MIT Press. Cambridge, MA, 1999.
- 3. NitinIndurkhya, Fred J. Damerau "Handbook of Natural Language Processing", Second Edition, CRC Press, 2010.

- 1. Rothman, Denis. Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more. Packt Publishing Ltd, 2021.
- 2. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.
- 3. Tom Hoobyar, Tom Dotz, Susan Sanders, "NLP: The Essential Guide to Neuro-Linguistic Programming", 2013.

			т	Р	0
21AD308	COMPUTER VISION	L 2	ו 0	г 2	3
COURSE OBJE	CTIVES:	-	v	-	•
To learn t	the concepts of image formation and processing.				
 To under 	stand feature detection and feature matching.				
 To understand the basics of feature-based alignment and motion estimation 					
 To execu 	te 3D reconstruction.				
 To learn 	about image based rendering and recognition.				
UNIT-I	INTRODUCTION TO IMAGE FORMATION AND PROCESSING				6
Computer Vision	- Geometric primitives and transformations - Photometric image for	matic	on –	The	digital
camera - Point o	perators - Linear filtering - More neighborhood operators – Fourier tra	nsfo	rms	- Pyr	amids
and wavelets - G	eometric transformations - Global optimization.				
UNIT-II	FEATURE DETECTION, MATCHING AND SEGMENTATION				6
Points and patch	es - Edges - Lines - Segmentation - Active contours - Split and mer	ge -	Mea	n shi	ft and
mode finding - N	ormalized cuts - Graph cuts and energy-based methods.				
UNIT-III	FEATURE-BASED ALIGNMENT & MOTION ESTIMATION				6
2D and 3D featur	e-based alignment - Pose estimation - Geometric intrinsic calibration -	Triar	ngula	tion -	- Two-
frame structure	from motion - Factorization - Bundle adjustment - Constrained stru	ucture	e an	d ma	otion -
Translational alig	nment - Parametric motion - Spline-based motion – Optical flow - Lay	/ered	l mot	ion.	
UNIT-IV	3D RECONSTRUCTION				6
Shape from X -	Active range finding - Surface representations - Point-based represe	entati	ons	Volu	metric
representations ·	Model-based reconstruction - Recovering texture maps and albedose	os.			
UNIT-V	IMAGE-BASED RENDERING AND RECOGNITION				6
View interpolatio	n Layered depth images - Light fields and Lumigraphs - Environment m	attes	s - Vi	deo-	based
rendering-Object	detection - Face recognition - Instance recognition - Category recog	nitio	п - С	onte	xt and
scene understan	ding- Recognition databases and test sets.				
			30	PER	IODS
PRACTICALEX			30	PER	IODS
1. Open	CV Installation and working with Python			~	
2. Basic	Image Processing - loading images, Cropping, Resizing, Thre	shol	ding	, Co	ntour
analy	sis, Bolb detection.				
3. Imag	e Annotation – Drawing lines, text circle, rectangle, ellipse on im	age	S.		
4. Imag	e Enhancement - Understanding Color spaces, color space conv	/ersi	on, ł	Histo	gram
equia	lization, Convolution, Image smoothing, Gradients, Edge Detect	tion.			
5. Imag	e Features and Image Alignment – Image transforms – Fourie	er, H	loug	h, E	xtract
ORB	Image features, Feature matching, cloning, Feature match	ing	base	əd iı	mage
aligni	nent.				
6. Imag	e segmentation using Graphcut / Grabcut				
7. Came	era Calibration with circular grid.				
8. Pose	Estimation				

9. 3D Reconstruction – Creating Depth map from stereo images.

10. Object Detection and Tracking using Kalman Filter, Camshift

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

- Summarize theories and methods of image processing and computer vision.
- Apply image processing techniques in OpenCV.
- Apply feature-based image alignment, segmentation and motion estimation for 2D image.
- Implement 3D reconstruction techniques.
- Design real time applications for image processing and computer vision.

TEXTBOOKS:

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer- Texts in Computer Science, Second Edition, 2022.
- 2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, Second Edition, 2015.

- 1. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
- 2. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006
- 3. E. R. Davies, Computer and Machine Vision, Fourth Edition, Academic Press, 2012.

21/	AD307	NATURAL LANGUAGE PROCESSING LABORATORY	L	Т	Ρ	С
217			0 0 4		4	2
COUR	SE OBJE	CTIVES:				
The m	ain objecti	ves of this course are:				
•	To impler	nent NLP concepts				
•	To impler	nent text classification and summarization				
•	To under	stand Sentiment Analysis				
•	To learn	spam detection model				
•	To desigr	n statistical processing for real-time applications				
		LIST OF EXPERIMENTS				
1.	Implemer	ntation of resume screening with python				
2.	Developn	nent of Sentiment Analysis with python				
3.	Develop	Keyword extraction with python				
4.	Developr	nent of NLP for other languages				
5.	Implemer	nt NLP for whatsapp chat				
6.	Chatbot I	mplementation				
7.	Implemer	nt of next word prediction model				
Requi	rement: St	andalone desktops with Python				
		TO	TAL	:60P	ERI	ODS
COUR	SE OUTC	OMES:				
At the	end of the	course, learners will be able to				
CO1:	Implement	NLP concepts using python				
CO2:	Create NL	P applications for other languages				
CO3:	Illustrate d	etection models				
CO4:	Develop a	oplications using sentiment analysis				
CO5:	Implement	whatsapp chat analysis				

VCET

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE SEMESTER- VII

21AD401	DATA VISUALIZATION	L	Т	Р	С
		3	0	0	3
COURSE OBJE	CTIVES:	1		1	
The main objecti	ves of this course are:				
To learn a	about the different types of data and how to visualize them effectively.				
 To develop 	op skills in applying visualization techniques to solve problems and un	ders	tand	data	•
• To use a	structured approach to create effective visualizations.				
To extract	t valuable insights from large datasets using visualization.				
• To build v	visualization dashboards to support decision-making.				•
UNIT-I	INTRODUCTION				9 Taali
Overview of dat	a visualization - Data Abstraction - Data Types, Dataset Types, Al		ite i	ypes	
Abstraction – An	alysis lasks abstractly, Designer of User action, Four Levels for Valid	allor	1, 100	Ir Lev	eis oi
					٩
Scalar and poir	techniques vector visualization techniques multidimensional tech	hniai	les	visu	alizina
cluster analysis.	matrix visualization in Bavesian data analysis.		u00,	vieu	anzing
UNIT-III	VISUAL ANALYTICS				9
Arrange Network	s and Trees. Connection -Link Marks. Matrix Views. Costs and Bene	efits:	Con	necti	on vs.
Matrix, Containm	ent- Hierarchy Heat Map, Map Color and Other Channels, Color Theo	ry Co	olor r	naps	Other
Channels.				•	
UNIT-IV	VISUALIZATION TOOLS & TECHNIQUES				9
Manipulate View	- Change View over Time Select Elements Navigate: Changing \	/iew	point	: Na\	/igate:
Reducing Attribu	tes -Visualization Attributes, Introduction to various data visualization	tool	ls, Vi	suali	zation
using R					•
UNII-V	DIVERSE I YPES OF VISUAL ANALYSIS		1:00	Anah	9
Multivariate Ana	lysis, Ranking Analysis, Deviation Analysis, Distribution Analysis, Co	hbos	uon ard C	roati	/SIS
Dashboard creat	ion using visualization tools for the use cases. Finance-marketing-insu	uran	ce-h	alth	care
Buonboard broat		TAL	_: 45	PER	
COURSE OUTC	OMES:				
At the end of the	course. learners will be able to				
CO1: Discover var	ious data types and ways to visualize them for better understanding.				
CO2: Identify visua	alizations techniques to specific problems using datasets.				
CO3: Understand	the different techniques for arranging networks and trees structured approac	h for	visua	al ana	lytics.
CO4: Show how to	analyze extensive datasets using different visualization methods and tools.				
TEXTROOKS.					
1 Tamara Mun	zer Visualization Analysis and Design - first edition CRC Press 2015				
2 Andy Kirk Data Visualization A Handbook for Data Driven Design Second Edition 2010					
3 Stephen Few	Now You See It - Analytics Press 2009	201	0		
	,				
REFERENCES					
1. Dr.Chun-hau	h Chen, W.K.Hardle,A.Unwin, Handbook of Data Visualization, Spring	jer p	ublic	ation	,2008
2. Ben Fry, Visu	alizing Data -, O'Reilly Media, 2008	-			
3. John Verzani	, Simpler- Using R for introductory statistics, Taylor&Francis, 2005				

BoS Chairman

21AD402		L	Т	Ρ	С			
	DATA VISUALIZATION LAB	0	0	4	2			
COURSE OBJE	CTIVES:				1			
The main objectives of this course are:								
 To underst 	stand various type of data, apply and evaluate the principles of data v	sual	izatio	on				
 To acquir 	e skills to apply visualization techniques to a problem and its associat	ed d	atas	ət				
 To underst 	stand the benefits and drawbacks of using connection and matrix view	/s foi	data	а				
visualizat	ion.							
To identif	y the various visualization tools and techniques to represent large dat	aset.						
I o learn i	now to bring valuable insight from a massive dataset using visualization	n						
 Inserts and a Γ 								
1. Implement a P	rogram for acquiring and plotting data							
2. Implement a P	rogram for Statistical Analysis such as Multivariate Analysis, PCA, LL)A, C	orre	latior	۱,			
regression and	analysis of variance							
3. Implement a P	rogram for Financial analysis using Clustering, Histogram and HeatM	ар						
4. Implement a P	rogram for Time-series analysis stock market		_					
5. Implement a P	rogram for Visualization of various massive dataset - Finance - Healtl	ncare	e - C	ensu	s –			
6 Implement a P	rogram for Visualization on Streaming dataset (Stock market dataset)	weatl	her fo	reca	estina)			
7 Implement a P	rogram for Market-Basket Data analysis-visualization	voui		1000	ioting)			
8 Implement a P	rogram for Text visualization using web analytics							
o. Implement a r	Togram for Text Visualization doing web analytics.	ΤΔ	· 60	PFR				
COURSE OUTC	OMES:		<u> </u>					
At the end of the	course, learners will be able to							
CO1: Explain the	concepts of data abstraction and task abstraction in data visualizatio	n.						
CO2: Identify and	d apply the different types of visualization techniques to data.							
CO3: Use visual	analytics techniques to explore and analyze data.							
CO4: Use visuali	zation tools to perform diverse types of visual analysis.							
CO5: Create das	hboard using visualization tools for different use cases.							

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SEMESTER VIII

21AD404	PROJECT WORK II	L	Т	Ρ	С	
		0	0	20	10	
COURSE C	DBJECTIVES:					
The main o	bjectives of this course are:					
• To g	gain domain knowledge, and technical skills to solve potential business / rese	arch	prob	lems.		
To gather requirements and design suitable software solutions and evaluate alternatives.						
• To v	vork in small teams and understand the processes and practices in the 'indus	stry.				
 To Implement, Test and deploy solutions for target platforms. 						
• To p	prepare project reports and presentation.					
The s approved b	students shall individually / or as group work on business/research domains a y the Department / organization that offered the internship / project.	nd re	elated	d probl	ems	
The student sho semester, a report which work and m be prepared students wi Regulations	student can select any topic which is relevant to his/her specialization of the buld continue the work on the selected topic as per the formulated methodolog after completing the work to the satisfaction of the supervisor and review con n contains clear definition of the identified problem, detailed literature review r nethodology for carrying out the work, results and discussion, conclusion an d as per the format prescribed by the University and submitted to the Head of II be evaluated based on the report and viva-voce examination by a panel of es.	he pi gy. A ommi elate d ref the d exam	rogra it the ittee, ed to erend epar iners	mme. end o a deta the are ces sh tment. as pe	The f the ailed a of ould The r the	
	TO	TAL:	300	PERI	ODS	

COURSE OUTCOMES:

At end of the course, learners will be able to

CO1: Gain Domain knowledge and technical skill set required for solving industry / research problems

CO2: Provide solution architecture, module level designs, algorithms

CO3: Implement, test and deploy the solution for the target platform

CO4: Prepare detailed technical report, demonstrate and present the work

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE VERTICAL - I

21PAD01	COGNITIVE COMPUTING	L	Т	Ρ	С
		3	0	0	3
COURSE (DBJECTIVES:	1			
The main c	bjectives of this course are:				
	 To know the theoretical background of cognition. 				
	• To understand the link between cognition and computational intelligence.				
	 To explore probabilistic programming language. 				
	 To study the computational inference models of cognition. 				
	 To study the computational learning models of cognition. 				
UNIT-I	PHILOSOPHY, PSYCHOLOGY AND NEUROSCIENCE				9
Philosophy	: Mental-physical Relation – From Materialism to Mental Science – Logic an	d the	e Sc	ience	es of
the Mind –	Psychology: Place of Psychology within Cognitive Science – Science of Inform	natio	n Pi	roces	sina
-Cognitive	Neuroscience – Perception – Decision – Learning and Memory – Language L	Inder	star	nding	and
Processing				0	,
UNIT-II	COMPUTATIONAL INTELLIGENCE				9
Machines a	and Cognition – Artificial Intelligence – Architectures of Cognition – Knowledg	je Ba	sed	Syst	tems
– Logical R	epresentation and Reasoning – Logical Decision Making –Learning – Langua	age -	- Vis	sion.	
UNIT-III	PROBABILISTIC PROGRAMMING LANGUAGE				9
WebPPL L	anguage – Syntax – Using Javascript Libraries – Manipulating probability type	s and	d dis	tribu	tions
– Finding I	nference – Exploring random computation – Coroutines: Functions that received	ve co	ontin	uatic	ns –
Enumeratio	on.				
UNIT-IV	INFERENCE MODELS OF COGNITION				9
Generative	Models - Conditioning - Causal and statistical dependence - Conditional de	epeno	deno	ce –	Data
Analysis –	Algorithms for Inference.				
UNIT-V	LEARNING MODELS OF COGNITION				9
Learning as	s Conditional Inference – Learning with a Language of Thought – Hierarchical	Mode	els–	Lear	rning
(Deep) Cor	ntinuous Functions – Mixture Models.				
	TO	TAL:	45 F	PERI	ODS
COURSE	DUTCOMES				
At end of th	ne course, learners will be able to				
Illustrate th	e basic components of social networks.				
CO1: Sum	marize the theory of cognition with suitable example.				
	rstand and outline the architecture of cognition.				
CO4 : Dem	onstrate applications using cognitive inference model				
CO5: Dem	onstrate applications using cognitive learning model				
TEXT BOC	DKS:				
1.	Vijay V Raghavan, Venkat N.Gudivada, VenuGovindaraju, C.R.	Rao		Cogr	nitive
	Computing: Theory and Applications: (Handbook of Statistics 35), Elsevier pu	blica	tions	s, 20	16.
2.	Judith Hurwitz, Marcia Kaufman, Adrian Bowles, Cognitive Computing and Bi	ig Da	ta	-	
	Analytics, Wiley Publications, 2015.	-			
L					

3. Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences", The MIT Press, 1999.

- 1. Jose Luis Bermúdez, Cognitive Science An Introduction to the Science of the Mind, Cambridge University Press 2020.
- 2. Noah D. Goodman, Joshua B. Tenenbaum, The ProbMods Contributors, "Probabilistic Models of Cognition", Second Edition, 2016.

21PAD02	RECO	MMENDER SYSTE	M	LTP	С
				3 0 0	3
COURSE O	BJECTIVES:				
The main o	bjectives of this course are:				
• Tou	inderstand the foundations of th	ne recommender sy	vstem.		
• log	jain the significance of content-	based recommend	er systems.		
• 101 T-1	earn about collaborative filtering	g.			
• 101	rain and design the attack resis	tant recommender	system.		
• 101	eam collaborative liltering.				
UNIT-I	INTRODUCTION				9
Introductior	and basic taxonomy of r	ecommender syst	ems - Traditional and	non-persor	alized
Recommer	der Systems - Overview of data	a mining methods fo	or recommender systems-	similarity	
measures-	Dimensionality reduction – Sing	gular Value Decom	position (SVD).		
UNIT-II	CONTENT-BASED RECOMM	IENDATION SYST	EMS		9
High-level a	architecture of content-based sy	stems - Item profile	es. Representing item prof	iles.	
Methods fo	r learning user profiles, Similari	ty-based retrieval, a	and Classification algorithr	ns.	
		-	-		
UNIT-III	COLLABORATIVE FILTERIN	IG			9
A systema	ic approach, Nearest-neighbo	r collaborative filte	ring (CF), user-based an	d item-base	d CF,
component	s of neighborhood methods	(rating normaliza	ation, similarity weight	computation	, and
neighborho	od selection.				
	ATTACK-RESISTANT RECO	MMENDER SYSTE	MS		9
	– Types of Attacks – Detecting	n attacks on recom	mender systems – Individi	ual attack –	Group
attack – Str	ategies for robust recommende	er design - Robust r	ecommendation algorithm	IS.	Croup
	0	0	0		
UNIT-V	EVALUATING RECOMMEND	DER SYSTEMS			9
Evaluating	Paradigms – User Studies – On	line and Offline eval	uation – Goals of evaluation	on design — [Design
Issues – Ac	curacy metrics – Limitations of	Evaluation measur	es.		
			TO		פחטומ
COURSE (UTCOMES		10		
At end of th	e course. learners will be able t	to			
CO1: Unde	rstand the basic concepts of re-	commender system	IS.		
CO2: Imple	ment machine-learning and dat	ta-mining algorithm	s in recommender system	s data sets.	
CO3: Imple	ment Collaborative Filtering in a	carrying out perforn	nance evaluation of recom	nmender	
CO4 Desid	in and implement a simple reco	mmender system			
CO5: Evalu	ate the recommender systems	for different applica	ations.		
TEXT BOO	KS:				
1. Cha	aru C. Aggarwal, Recommende	r Systems: The Tex	tbook, Springer, 2016.		
Z. DIE Roi	unar Jannach , Markus Zanker commender Systems: An Introd	, Alexander Fellern	iy and Gernard Friedrich, University Press, 1 st Editic	on 2011	
3. Jur	e Leskovec, Anand Raiaraman	Jeffrey David Ullm	an. Mining of massive dat	asets. 3 rd	
edi	ion, Cambridge University Pres	s, 2020.	,	, -	
·					
B.Tec	n. AI&DS B	oS Chairman	R-2021(CHOICE BASED CREDI	T SYSTEM)	

- 1. Monideepa Roy, Pushpendu Kar, Sujoy Datta, Recommender Systems: A Multi-Disciplinary Approach,1st Edition, CRC Press, 2023.
- 2. Francesco Ricci, Lior Rokach, Bracha Shapira, Recommender Systems Handbook, 1st Edition, Springer, 2011.

21PAD03	DISTRIBUTED COMPUTING	L	Т	Ρ	С
		3	0	0	3
COURSE C	BJECTIVES:				
The main o	bjectives of this course are:				
• To s	tudy the distributed system principles and architecture models.				
• To g	ain knowledge about various communication models.				
• Tou	inderstand distributed file systems.				
• To le	earn synchronization and replication techniques.				
• To s	tudy the resource management techniques.				
UNIT-I	INTRODUCTION				9
Introduction	 Examples of distributed systems—Trends in distributed systems – Focus on 	resc		e sha	aring
-Challenge	s – World Wide Web – System models – Physical models – Architectural mode	⊧ls – I	-uno	dame	ental
models.					
UNIT-II	COMMUNICATION IN DISTRIBUTED SYSTEM				9
Inter Proces	ss Communication – the API for the Internet protocols – External data represer	ntatio	n —	Mult	cast
communica	tion – Network virtualization: Overlay networks. MPI – Request-reply pro	toco	IS –	Rer	note
procedure of	call. Distributed Objects: Java RMI – Group communication – Publish-sub	scrib	e sy	/ster	ns –
Message qu	ueues – Shared memory approaches – From Objects to Components: Enterp	rise	Java	a Bea	ans.
UNIT-III	PEER TO PEER SYSTEMS AND DISTRIBUTED FILE SYSTEMS				9
Introduction	- Napster and its legacy - Peer-to-peer Middleware - Routing overlays	3 – ()ver	lay	case
studies: Pas	stry, Tapestry. Distributed File Systems – File service architecture – Sun Net	work	File	e Sys	stem
-Google Fil	e System – Name Services and Domain Name System – Directory services	s – C	case	e stu	dies:
The Global	Name System, X.500 Directory Service.				
UNIT-IV	SYNCHRONIZATION AND FAULT TOLERANCE				9
Introduction	 Clocks, events and process states – Synchronizing physical clocks – Logic 	al tim	e ar	nd lo	gical
clocks – G	lobal states – Coordination and Agreement – Distributed mutual exclusion	on –	Ele	ectio	ns –
Transaction	s – Locks – Optimistic concurrency control – Timestamp ordering – Atomic c	omm	it pr	otoc	ols –
Concurrenc	y control in distributed systems – Distributed deadlocks.				
UNIT-V	RESOURCE AND PROCESS MANAGEMENT				9
Resource r	nanagement: Desirable features of a good global scheduling algorithm -	Task	as	signr	nent
approach –	Load balancing approach – Load sharing approach – Process management: I	Proce	essi	migra	ation
– Threads.					
	ТОТ	'AL:4	15 P	ERI	ODS
COURSE C	OUTCOMES				
At end of th	e course, learners will be able to				
CO1: Explo	re the system models in distributed system.				
CO2: Apply	various communication models in distributed system.				
	re distributed file systems.				
CO5: Use r	esource management algorithms for load balancing				
000.0001	course management algorithms for load balancing.				
TEXT BOO	KS:				
1. Geo	rge Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Conc	epts	and	Des	ign",
Fifth	Edition, Pearson Education, 2012.				
2. Prac	leep K Sinha, "Distributed Operating Systems: Concepts and Design", Pren	tice	Hall	of Ir	ndia,
2007	7.				

3. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.

- 1. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 2. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003.
- 3. MukeshSinghal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems Distributed, Database, and Multiprocessor Operating Systems", Tata McGraw–Hill, 2001.

21PAD04	QUANTUM COMPUTING	L	Τ	Ρ	С	
		3	0	0	3	
COURSE O	DBJECTIVES:					
The main o	bjectives of this course are:					
	 To understand the basics of Quantum Computing. 					
	 To familiarize the concepts of Quantum gates. 					
	 To explore the applications of Quantum Computing. 					
	• To understand the importance of Shor's algorithm & Grover's algorithm.					
	• To conceptualize the physical realization of Quantum computers.					
UNIT-I	FUNDAMENTALS OF QUANTUM COMPUTING				9	
From Bits	to Qubits – Power of Quantum Computing – How Quantum Physics Diffe	ers fr	om	clas	sical	
physics? – Obstacles and Research – Qubits - Quantum Mechanics - Computer Science Perspectives.						
UNIT-II	QUANTUM GATES AND CIRCUITS				9	
Quantum G	ates – Single & Multiple Qubit Gates – Matrix Representation of Quantum G	Sates	and	d Cir	cuits	
- Bell State	s – Quantum Measurement – Quantum Half-Adder and Subtractor.					
UNIT-III	APPLICATIONS OF QUANTUM COMPUTING				9	
Quantum T	eleportation – Quantum Parallelism – Superdense Coding – Quantum Crypto	grapł	י או	Quar	ntum	
Noise and I	Error Correction.		5			
UNIT-IV	QUANTUM ALGORITHMS				9	
Deutsch-Jo	zsa Algorithm - Shor's Algorithm – Examples- Quantum Fourier Transform	–lmp	lem	enta	tion-	
Phase esti	mation- Shor's algorithm using phase estimation – order finding and fac	ctorin	g -	Gro	/er's	
Algorithm (Quantum Search Algorithms)- steps- Geometric visualization- order of Gro	over's	s alg	gorith	m –	
Application	δ.					
UNIT-V	QUANTUM COMPUTER REALIZATION AND SOFTWARE				9	
Physical Re	alization of Quantum Computers – Basic requirements- Harmonic oscillator Q	uant	um d	comp	outer	
- Optical	ohoton quantum computer- Optical cavity quantum Electrodynamics – Ic	on tra	aps-	Nuc	clear	
magnetic re	esonancesilicon quantum computer- Quantum Computing Software-Quantum	ו Quo	dit S	imul	ator-	
CAD for Qu	antum Computer Simulator(QCAD)- Quantum Circuit Viewer.					
	TO	ſ <mark>AL:</mark>	45 P	ERI	DDS	
COURSE C	DUTCOMES					
At end of th	e course, learners will be able to					
CO1: Apply	the basic concepts in Quantum computing.					
CO2: Design simple circuits using Quantum gates.						
CO3. Desig	bre the applications of Apply Shor's and Grover's algorithm in Quantum comp	utina				

CO5: Explore Quantum computing software.

TEXT BOOKS:

- 1. Vishal Sahni, "Quantum Computing", McGraw Hill education , First edition, 2007.
- 2. Dan C. Marinescu, Gabriela M. Marinescu, "Approaching Quantum Computing", Prentice Hall, 2004.

3. Mika Hirvensalo "Quantum Computing", 2nd Edition, Springer, 2004.

- 1. Giuliano Beneti, Giulio Casati, GuilianoStrini, "Principles of Quantum Computation and Information", Vol.1 Basic Concepts, World Scientific Publishing Company, October 2004.
- 2. David Mcmahon, " Quantum Computing Explained", Wiley-IEEE Computer Society Press, 2007.

21PAD05			т	Р	C
2117.000		3	0	0	3
COURSE C	BJECTIVES:		•	•	-
The main o	ojectives of this course are:				
• Тор	rovide an in-depth and comprehensive knowledge of the Cloud Computing fur	ndam	enta	al iss	ues,
tech	nologies, applications and implementations.				
• To e	expose the students to the frontier areas of Cloud Computing.				
• To	motivate students to do programming and experiment with the various	clou	d co	ompi	uting
envi	ronments.				
• To s	hed light on the Security issues in Cloud Computing.				
• To ii	ntroduce about the Cloud Standards.				
					•
UNIT-I	FOUNDATION OF COMPUTING TECHNOLOGIES	Nucht			9
Crid comp	entralized and Distributed Computing - Overview of Distributed Computing, C	iuste	er co a a	mpu nd a	ung,
	Software environments for distributed systems- System models for Distr	Bude	ua	na c	iouu
					0
	to Cloud Computing, Cloud issues and challenges - Properties - Charac	torict	ics	- 50	rvice
models De	ployment models. Cloud resources: Network and API - Virtual and Physic	cal c	omr	utati	ional
resources	Data-storage Virtualization concepts - Types of Virtualization- Introdu	ictior	to	Var	ious
Hypervisors	- High Availability (HA)/Disaster Recovery (DR) using Virtualization. Moving	VMs		vui	1000
	CLOUD SERVICES		-		9
Service mo	dels - Infrastructure as a Service (IaaS) - Resource Virtualization: Server. S	torac	ie. N	letw	ork -
Case studie	s. Platform as a Service (PaaS) - Cloud platform & Management: Computatio	n, St	orac	ae - C	Case
studies. Sof	tware as a Service (SaaS) - Web services - Web 2.0 - Web OS - Case studie	, s – <i>F</i>	۹ Anyt	hing	as a
service (Xa	aS).		•	0	
UNIT-IV	CLOUD APPLICATION DEVELOPMENT				9
Cloud Prog	ramming and Software Environments – Parallel and Distributed Programn	ning	para	adigr	ns –
Programmir	ng on Amazon AWS and Microsoft Azure – Programming support of Goog	gle A	pp	Engii	ne –
Emerging C	loud software Environment.				
UNIT-V	CLOUD DATA AND SECURITY				9
Cloud Acce	ss: authentication, authorization and accounting - Cloud Provenance and n	neta-	data	a - C	loud
Reliability a	and fault-tolerance - Cloud Security, privacy, policy and compliance- (Cloud	d fe	dera	tion,
interoperab	lity and standards.				
	TOT	AL:4	45 P	ERI	ODS
COURSE C	DUTCOMES				
At end of th	e course, learners will be able to				
CO1: Articu	late the main concepts, key technologies, strengths, and limitations of cloud	comp	Sutir	ng.	lic
cloud	private cloud, hybrid cloud, etc.	a0, 1	aao	, pur	nic.
CO3: Expla	in the core issues of cloud computing such as security, privacy, and interope	rabili	ty.		
CO4: Identi	fy possible applications for state-of-the-art cloud computing		5		
CO5: Provid	de the appropriate cloud computing solutions and recommendations accordir	ng to	the		
applic	ations used.				
TEXT BOO	KS:				
	. Kai Hwang, Geoffrey C. Fox and Jack J. Dongarra. "Distributed and cloud	l con	nput	ing fr	om
	Parallel Processing to the Internet of Things", Morgan Kaufmann, Elsevie	r – 2	012.		

- 2. Barrie Sosinsky, "Cloud Computing Bible" John Wiley & Sons, 2010.
- 3. Tim Mather, Subra Kumaraswamy, and Shahed Latif, Cloud Security and Privacy An Enterprise Perspective on Risks and Compliance, O'Reilly 2009.

- 1. Dan C. Marinescu, "Cloud Computing: Theory and Practice", Morgan Kaufmann Publications, Third Edition, 2022.
- 2. Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi, "Mastering Cloud Computing", TMGH Publications, First Edition, 2017.

21PAD06	SOFT COMPUTING ESSENTIALS	L	Т	Ρ	С	
		3	0	0	3	
COURSEO	BJECTIVES	•	•	Ŭ	•	
The main of	piectives of this course are:					
Defin	ne soft computing and explain its key characteristics, and major areas of ap	plica	tion.			
Desc	cribe Membership Functions and their role in quantifying uncertainty in Fuzz	zy Lo	gic.			
Anal	yze the components of a General Genetic Algorithm and understand their re	oles	in			
optir	nization problems.					
Under	erstand the fundamental concepts of artificial neural networks and implement	nt sir	nple i	neura	al	
netw	orks to solve classification and regression problems.					
Desi	gn and implement hybrid soft computing systems to solve complex problem	IS			-	
UNIT-I	UNIT-I INTRODUCTION TO SOFT COMPUTING 9					
Concept Of	Computing Systems, Difference between Hard Computing and Soft Computing	ing, (Chara	cteri	stics	
	puting, Major Areas of Soft Computing, Applications of Soft Computing.				•	
UNIT-II Introduction	Classical Sate and Euzzy Sate Classical Polations and Euzzy Pola	tions	Mo	mho	9 shin	
Functions F	, Classical Sets and Fuzzy Sets, Classical Relations and Fuzzy Rela	no F			ision	
Making.		113, 1	uzzy	DCC	3011	
	GENETIC ALGORITHMS				9	
History of G	enetic Algorithms (GA), Biological Background of GA, Basic Terminologies	in G	A, Si	mple	GA,	
General Ge	netic Algorithm, GA Operators: Encoding, Crossover, Selection, Mutation	n, C	lassifi	catic	n of	
Generic Alg	orithm.					
UNIT-IV	ARTIFICIAL NEURAL NETWORKS				9	
Fundamenta	al Concepts of Artificial Neural Networks, Models of ANNs, Important Term	inolo	gies	of Al	NNs,	
McCulloch-I	Pitrs Neuron, Hebb Network, Perceptron Network, Back-Propagation Netw	ork,	Koho	nen	Self-	
Organizing	-eature Maps, Learning Vector Quantization.				•	
UNIT-V	HIBRID SISIEMS	Suc	tomo	A	9 ilion/	
Hybrid Sys	tems Embedded Hybrid Systems Neuro-Euzzy Hybrid Systems Neu	Sys Iro-G	iems, ionoti	Aux c H	hrid	
Systems Fi	izzy-Genetic Hybrid Systems, Neuro-1 uzzy Hybrid Systems, Neu	110-C	eneu		Juliu	
	TO	TAL	: 45 F	PERI	ODS	
COURSE O	UTCOMES:		-			
At the end c	f the course, learners will be able to					
CO1: Under	stand the fundamental concepts and principles of soft computing.					
CO2: Perfor	m Fuzzy Arithmetic operations and construct Fuzzy Rule-Based Systems for	or de	cisior	า-		
makir	IQ.			•		
CO3: Analy	ze the performance of genetic algorithms and identify ways to improve their	perf	orma	nce.		
CO4: Apply	ANNs for pattern recognition and data analysis using techniques like Kohon	ien S	Self-O	rgan	izing	
Featu	re Maps and Learning Vector Quantization.					
CO5: Analy	ze Neuro-Genetic Hybrid Systems and Fuzzy-Genetic Hybrid Systems for s	olvin	ig cor	nplex	(
proble	ems.					
TEXTBOOK	(S:					
1. S.N	. Sivanandam and S. N. Deepa,"Principles of Soft Computing" 4 th Edition,W	′iley,:	2018.			
2. Davi	d E. Goldberg, "Genetic Algorithms", 4 th Edition, Addison-Wesley Professio	nal,2	018.			
3. D.K.	Pratihar "Soft Computing: Fundamentals And Applications" 2 nd Edition, A	Alpha	Scie	ence		
Inter	national,2015.					
DECEDEN	<u>сго.</u>					
KEFEREN	UED: ir Day "Soft Computing" 5th Edition DIII I comiss Did I tol 0040					
	II ROY, SOIL COMPULING, ST Edition, PHI Learning PVI. Ltd. 2018.	10	Q t			
	neutine O. Narray and Clarence de Silva, Soft Computing and Intellig	jent	Syste	ems		
Desi						

3. Kevin P. Murphy,"Machine Learning: A Probabilistic Perspective: 4th Edition, MIT Press,2021.

21PAD07		L	т	Р	С
		3	0	0	3
The main of	bjectives of this course are:				
	To understand the fundamental concepts Generative Al				
	To understand integration of generative AI and NLP.				
•	To learn security aspects of generated content.				
•	To acquire knowledge on programming and problem-solving abili	ities.			
•	To get familiar with applications of Generative AI.				
UNIT I	INTRODUCTION				9
History of Generative Models-History of Generative AI - Developments in Generative AI – Evaluating					
Generative	AI - Applications of Generative AI - Regulatory and Legal aspects	s of G	ienera	tive	AI -
Ethical and	responsible Use - Intellectual Property Rights- Privacy and data	prote	ction-E	Bias	and
discriminatio	on - salety and security.				
UNIT II	GENERATIVE AI AND ChatGPT			9	
Use cases t	for Generative AI - Content Creation - Image and Video Analysis -	Disas	ter res	spon	se -
Fraud Dete	ction - Decision Making - Predictive analytics - personalized service	ces -	Use c	ases	s for
ChatGPI -	Customer service - Naturel Language Processing - Information H	Retrie	val -La	angu	lage
Iranslation	- Policy Analysis - Speech Recognition - Virtual Assistants.				
	GENERATED CONTENT AUTHENTICATION				9
Authenticity	AI generated content - Limitations and challenges of generative AI -	gener	ated c	onte	nt -
Spread of N	lisinformation - Amplification of Bias - Creation of Fake identities -	job d	isplac	eme	nt -
Security Ris	ks.				
UNIT IV	CODING POTENTIAL OF GENERATIVE AI				9
Potential of	ChatGPT in coding and Programming-Problem solving abilities (Qu	antitat	tive) -	Prok	olem
solving abili	ties (Qualitative) - Problem solving abilities of ChatGPT - How begins a patential of ChatGPT in Descent work	inner	start C	Chat	GPT
for problem	solving - Potential of ChatGPT in Research work.				
UNIT V	APPLICATIONS OF GENERATIVE AI WITH CHATGPT				9
Use cases f	inancial Industry - Use cases in Healthcare Industry - Use cases in E	-comi	nerce	Indu	istry
- Generative	AI and Chatgpt help india G20 Summit - Future Scope of ChatGPT.	,			
		DTAL	: 45 P	ERIC	DDS
At the end of	I COMES:				
CO1. Outlin	the concepts of Generative AI and list its legal aspects				
CO2: Make	use of use cases to integrate Generative AI with application such as	Chat	GPT.		
CO3: Illustrate various security aspects in generated content.					
CO4: Illustr	ate examples for problem solving abilities in ChatGPT.				
CO5: Prepa	are use cases for various applications of Generative AI.				
	KS [.]				
1. Utr	al Chakraborty, Soumyadeep Rov. Sumit Kumar. Rise of Generative	Al an	d Chat	GP1	. 1 st
Edi	tion, BPB Publications, 2023.				,
2. Ma	ula, D. B., Generative AI: The Beginner's Guide. (n.p.): Amazon Dig	gital S	ervice	s LL	- C
Kdp, 2023.					

3. Patel, D. M., Artificial Intelligence & Generative AI for Beginners: The Complete Guide. United States, 2023.

- 1. Joseph Babcock,Raghav Bali,Generative AI with Python and Tensorflow 2, 1st Edition, Packt Publishing Ltd.,2021.
- 2. Emerson, J., Ripples of Generative AI: How Generative AI Impacts, Informs, and Transforms Our Lives. (n.p.): Artificial Intelligence., 2023.
- 3. Valentina Alto, Modern Generative AI with ChatGPT and Open AI, Packt Publishing Ltd., 2023.

21PAD08	FOG COMPUTING	1	т	Р	С
		3	0		3
COURSE C	BJECTIVES:	•	•	•	•
The main of	pjectives of this course are:				
	To understand the basics of Edge and Fog Computing.				
	To conceptualize the communication standards.				
	To familiarize with integration of edge with data analytics.				
	To understand the importance of security infrastructures and ma	nade	men	t.	
	To explore the applications of edge Computing				
UNIT-I	FOG COMPUTING AND ITS MODELS				9
Introduction	to Fog Computing: Fog Computing, Characteristics, Application	Scer	nario	s, Iss	sues
andchalleng	es. Fog Computing Architecture: Communication and Network Mc	del,	Prog	Iramr	ning
Models, Fog	g Architecture for smart cities, healthcare and vehicles.				
UNIT-II	COMMUNICATION TECHNOLOGIES				9
Fog Compu	iting Communication Technologies: Introduction, IEEE 802.11, 4	G, 5	G st	tanda	ards,
WPAN, Sho	rt-Range Technologies, LPWAN and other medium and Long-Rang	е Те	chno	logie	S.
UNIT-III	EDGE, FOG & CLOUD				9
Manageme	nt and Orchestration of Network Slices in 5G, Fog, Edge, and Clo	buds	Intr	oduc	tion,
Background	l, Network Slicing in 5G, Network Slicing in Software-Defined Cloud	ls, No	etwo	rk Sli	cing
Manageme	nt in Edge and Fog, Middleware for Fog and Edge Computing, Need	for l	Fog a	and E	dge
Computing	Middleware, Clusters for Lightweight Edge Clouds, IoT Inte	egrat	ion,	Sec	urity
Manageme	nt for Edge Cloud Architectures. Fog Computing Realization for B	ig D	ata /	Analy	tics:
Introduction	to Big Data Analytics, Data Analytics in the Fog, Prototypes and Ev	alua	tion.		
UNIT-IV	IOT & SECURITY INFRASTRUCTURE				9
Fog comput	ing requirements when applied to IoT: Scalability, Interoperability, Fo	g-lo]	[Arc	hitec	tural
model, Cha	lenges on IoT Stack Model via TCP/IP Architecture, Data Managem	ent, f	ilteriı	ng, E	vent
Manageme	nt, Device Management, cloudification, virualization, security an	d pr	ivacy	y iss	ues.
Integrating	oT, Fog, Cloud Infrastructures: Methodology, Integrated C2F2T Lite	ratur	e by	Mode	eling
Technique I	by Use-Case Scenarios, Integrated C2F2T Literature by Metrics.				
UNIT-V	APPLICATIONS				9
Exploiting F	og Computing in Health Monitoring: An Architecture of a Health Mo	nitori	ng lo	DT Ba	ased
System with	Fog Computing, Fog Computing Services in Smart E-Health Gatew	ays,	Disc	ussio	on of
Connected	Components. Fog Computing Model for Evolving Smart Transport	ation	Арр	licati	ons:
	, Data-Driven Intelligent Transportation Systems, Fog Comp	outin	g to	or S	mart
Transportat	ion, Applications Case Study: Intelligent Traffic Lights Management			/sten	1.
0011505.0	10	IAL	45 F	ERI	JDS
COURSE C					
At end of th	e course, learners will be able to				
CO1: Expla	in the basic concepts in Edge computing.	and	ito		
Derfo	mance	anu	115		
CO3: Explo	re Fog on security, multimedia and smart data.				
CO4: Explo	re the integration of fog computing with IoT.				
CO5: Mode	I the fog computing scenario.				
TEXT BOO	KS:				
1. Fog	Computing: Theory and Practice by Assad Abbas, Samee U. Khan,	Albe	ert Y.	, 202	0

- Fog and Edge Computing: Principles and Paradigms (Wiley Series on Parallel and Distributed Computing) by Rajkumar Buyya and Satish Narayana Srirama, John Wiley & Sons, 2019
- 3. Amir Vahid Dastjerdi and Rajkumar Buyya, —Fog Computing: Helping the Internet of Things Realize its Potential, University of Melbourne, IEEE Computer Soc, 2016

- 1. Amir M. Rahmani, Pasi Liljeberg, Preden, Axel Jantsch, —Fog Computing in the Internet of Things Intelligence at the Edgell, Springer International Publishing, 2018.
- 2. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli, —Fog Computing and Its Role in the Internet of Things, MCC' 12, 2012.

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

VERTICAL – II

3 0 0 3 COURSE OBJECTIVES: The main objectives of this course are: • To Understand the security problems and defend the cyberspace. • To gain knowledge for protecting against attacks, threats and intrusion. • To dunderstand how to leverage intelligence. • To explore adversary behaviour and make use of indicators of compromise to detect and stop malware. • • To explore knowledge on intelligence reports. 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks us. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques. 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). 9 UNIT-IV THREATINTELLIGENCE 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat int	21PAD17	CYBER THREAT ANALYTICS	L	Т	Ρ	С
COURSE OBJECTIVES: The main objectives of this course are: • To Understand the security problems and defend the cyberspace. • To gain knowledge for protecting against attacks, threats and intrusion. • To explore adversary behaviour and make use of indicators of compromise to detect and stop malware. • To explore knowledge on intelligence reports. UNIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques. UNIT-II THREAT INTELLIGENCE Q Other threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat at cotr, Indicators of Compromise (IoCs). UN			3	0	0	3
The main objectives of this course are: To Understand the security problems and defend the cyberspace. To gain knowledge for protecting against attacks, threats and intrusion. To Understand how to leverage intelligence. To explore adversary behaviour and make use of indicators of compromise to detect and stop malware. To explore nowledge on intelligence reports. UNIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion KII Chain, Zero days, Attack surface, Attack vectors, Evasion techniques. Hort and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasitent Threats, Intrusion KII Chain, Zero days, Attack surface, Attack vectors, Evasion techniques. UNIT-II THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (loCs). UNIT-V THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat Intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system.	COURSE O	BJECTIVES:				
To Understand the security problems and defend the cyberspace. To gain knowledge for protecting against attacks, threats and intrusion. To Understand how to leverage intelligence. To explore adversary behaviour and make use of indicators of compromise to detect and stop malware. To explore nowledge on intelligence reports. UNIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques. UNIT-II THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (locs). UNIT-VI THREATINTELLIGENCE 9 Campaign analysis, Diamond model, Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (locs). UNIT-V THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Campaign analysis, Diamond model, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat Intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4:	The main ob	jectives of this course are:				
To gain knowledge for protecting against attacks, threats and intrusion. To Understand how to leverage intelligence. To explore adversary behaviour and make use of indicators of compromise to detect and stop malware. To explore knowledge on intelligence reports. VIIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-I CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques. Hots and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-II THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, indicators of Compromise (IoCS). UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO3: Explain the security of network and system. CO3: Explain the security of network and system. CO3: Explain the security of network	• To U	nderstand the security problems and defend the cyberspace.				
To Understand how to leverage intelligence. To explore adversary behaviour and make use of indicators of compromise to detect and stop malware. To explore knowledge on intelligence reports. UNIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-I CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-II THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TET BOOKS: W	 To ga 	ain knowledge for protecting against attacks, threats and intrusion.				
To explore adversary behaviour and make use of indicators of compromise to detect and stop malware. To explore knowledge on intelligence reports. INIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDOS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-I CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat atcor, Indicators of Compromise (loCs). UNIT-V THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to C01: Develop incident response skills to combat network and system. C02: Classify various types of attacks and learn the tools to launch the attacks. C03: Explain the security of network and system. C04: Review and analyze threat intelligence logs and reports. C04: Review and analyze threat intelligence logs and reports. C04: Review and manalyze threat intelligence logs and reports. C04: Review and manalyze threat intelligence logs and reports	• To U	nderstand how to leverage intelligence.				
 To explore knowledge on intelligence reports. UNIT-I CYBER ATTACKS, INTRUSIONS, THREATS Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-III THREAT INTELLIGENCE Q Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). UNIT-IV THREATINTELLIGENCE MODEL Q Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO3: Classify and Respond to the threats. TE	• To e:	plore adversary behaviour and make use of indicators of compromise t	o de	tect	and	stop
 To explore knowledge on intelligence reports. UNIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Nulnerability Types, Threat Types, Attacks vs. Intrusion, DDOS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). UNIT-IV THREATINTELLIGENCE 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. COURSE OUTCOMES At end of the course, learners will be able to CO3: Explain the security of network and system. CO3: Elasify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO3: Elasify and Respond to the threats. TEXT BOOKS: Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas,	malw	are.				
UNIT-I CYBER ATTACKS, INTRUSIONS, THREATS 9 Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. 9 UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. 9 Cyber Threat IntELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS CO3: Explain the security of network and system. CO3: Explain the security of network and system. CO3: Explain the security of network and system. C04: Review and analyze threat intelligence logs and reports.	• To ex	cplore knowledge on intelligence reports.				
Introduction to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Threat Types, Attacks vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCS). UNIT-IV THREATINTELLIGENCE 00DEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	UNIT-I	CYBER ATTACKS, INTRUSIONS, THREATS				9
vs. Intrusion, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cybercrimes. UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-II THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (loCs). UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO3: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Introduction	to cyber-attacks, attack model, Adversary Types, Vulnerability Types, Three	eat T	ypes	s, Att	acks
UNIT-II CYBER THREATS AND INTRUSION KILL CHAIN 9 Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. 9 UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). 9 UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO2: Classify and Respond to the threats. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligen	vs. Intrusion	, DDoS, Types, Malware, malware Types, Introduction to Dark net, Cyber	crim	es.		
Introduction to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attack surface, Attack vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). 9 UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to Co: Classify various types of attacks and learn the tools to launch the attacks. CO2: Classify and Respond to the threats. Course eview and analyze threat intelligence logs and reports. COURSE OUTCOMES At end of the course, learners will be able to <td colspan="</td> <td>UNIT-II</td> <td>CYBER THREATS AND INTRUSION KILL CHAIN</td> <td></td> <td></td> <td></td> <td>9</td>	UNIT-II	CYBER THREATS AND INTRUSION KILL CHAIN				9
vectors, Evasion techniques – Host and Network level evasions, Covert Communication: Infiltration and Exfiltration, Advanced Evasion techniques. UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to C01: Develop incident response skills to combat network and system. C02: Classify various types of attacks and learn the tools to launch the attacks. C03: Explain the security of network and system. C04: Review and analyze threat intelligence logs and reports. C05: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Introduction	to Advanced Persistent Threats, Intrusion Kill Chain, Zero days, Attac	k su	irfac	e, A	ttack
Exfiltration, Advanced Evasion techniques. 9 UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). 9 UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to C01: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. C03: Explain the security of network and system. C04: Review and analyze threat intelligence logs and reports. C05: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence	vectors, Eva	sion techniques – Host and Network level evasions, Covert Communicati	on: lı	nfiltr	ation	and
UNIT-III THREAT INTELLIGENCE 9 Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (loCs). 9 UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIDES COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO2: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Exfiltration,	Advanced Evasion techniques.				
Cyber Threat Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frameworks, CTI types, generic threat actor, Indicators of Compromise (IoCs). UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	UNIT-III	THREAT INTELLIGENCE				9
generic threat actor, Indicators of Compromise (IoCs). 9 UNIT-IV THREATINTELLIGENCE MODEL 9 Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Cyber Threa	t Intelligence (CTI), Overview of Threat Intelligence Lifecycle and Frame	work	ks, C	CTI ty	vpes,
UNIT-IVTHREATINTELLIGENCE MODEL9Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions.Introduction reconstruction, OSINT, Challenges with detection intrusions.UNIT-VSECURITYOPERATION CENTRE (SOC)9Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration.TOTAL:45 PERIODSCOURSE OUTCOMESAt end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats.Itelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018.1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	generic threa	at actor, Indicators of Compromise (IoCs).				
Campaign analysis, Diamond model, Threat intel methodologies, Intrusion reconstruction, OSINT, Challenges with detection intrusions. UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	UNIT-IV	THREATINTELLIGENCE MODEL				9
Challenges with detection intrusions. 9 UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO2: Classify various types of attacks and learn the tools to launch the attacks. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO2: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Campaign a	nalysis, Diamond model, Threat intel methodologies, Intrusion recon	struc	tion	, OS	SINT,
UNIT-V SECURITYOPERATION CENTRE (SOC) 9 Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO2: Classify various types of attacks and learn the tools to launch the attacks. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Challenges	with detection intrusions.				
Introduction to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collection Management, Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	UNIT-V	SECURITYOPERATION CENTRE (SOC)				9
Threat Intelligence Data Feeds and Sources, Data Processing and analysis, building your own SOC, Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Introduction	to SIEM, Threat Intelligence Data Collection, Threat Intelligence Collect	ion N	Mana	agen	nent,
Visualizing the threat intelligence data. Threat Intelligence Reports: Baseline and Diff, Blacklists and Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Threat Intell	gence Data Feeds and Sources, Data Processing and analysis, buildin	g yo	ur o	wn S	SOC,
Whitelists, Tracking, Integration. TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Visualizing t	he threat intelligence data. Threat Intelligence Reports: Baseline and D	Diff, E	Black	dists	and
TOTAL:45 PERIODS COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	Whitelists, T	racking, Integration.				
 COURSE OUTCOMES At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 		TO	TAL:	45 F	PERI	ODS
At end of the course, learners will be able to CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: 1. Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. 2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	COURSE O	UTCOMES				
 CO1: Develop incident response skills to combat network and system. CO2: Classify various types of attacks and learn the tools to launch the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 	At end of the	course, learners will be able to				
 CO2: Classify validus types of attacks and learn the tools to faulten the attacks. CO3: Explain the security of network and system. CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 	CO1: Develo	op incident response skills to combat network and system.				
 CO4: Review and analyze threat intelligence logs and reports. CO5: Classify and Respond to the threats. TEXT BOOKS: Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 	CO2. Classi	by various types of allacks and learn the tools to faunch the allacks.				
 CO5: Classify and Respond to the threats. TEXT BOOKS: Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 	CO4: Review	v and analyze threat intelligence logs and reports.				
 TEXT BOOKS: Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 	CO5: Classi	fy and Respond to the threats.				
 Wilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence Can be an Effective Response to Incidents, Packt publisher, 2018. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 	TEXT BOOK	(S:				
Effective Response to Incidents, Packt publisher, 2018.2. Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018.	1. V	/ilson Bautista, Practical Cyber Intelligence: How Action-based Intelligence	ce Ca	an b	e an	
 Arun E Thomas, Security Operations Center - SIEM Use Cases and Cyber Threat Intelligence, 2018. 	E	ffective Response to Incidents, Packt publisher, 2018.				
Intelligence, 2018.	2. A	run E Thomas, Security Operations Center - SIEM Use Cases and Cybe	r Thr	eat		
	l Ir	ntelligence, 2018.				
3. Jocelyn O. Padallan, "Cyber Security", Arcler press, 2019

- 1. Eoghan Casey, Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet, Elsevier, 2011.
- 2. John Sammons, The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics, Syngress publisher, 2013

21PAD18	IOT SECURITY	L	Т	Ρ	С
		3	0	0	3
COURSE C	DBJECTIVES:				
The main o	bjectives of this course are:				
• Tol	Inderstand the security practices of IoT.				
• To (ain knowledge about attacks and threats.				
• To e	explore about secure and smart IoT applications.				
• To a	acquire knowledge on executing security algorithms on IoT devices.				
• To e	explore societal impact on IoT security.				
UNIT-I	INTRODUCTION: SECURING THE INTERNET OF THINGS				9
Introductior	n - Security Requirements in IoT architectures - Security in Enabling Te	chnc	logi	es –	ΙoΤ
Security Lif	e Cycle – Cryptographic Fundamentals for IoT Security Engineering - Securit	y Co	ncei	rns ir	loT
Application	s – Basic Security Practices.				
UNIT-II	SECURITY ARCHITECTURE IN THE INTERNET OF THINGS				9
Introductior	n – Security Requirements in IoT – Insufficient Authentication/Authorization -	- Inse	ecur	e Ac	cess
Control –	Threads to Access Control, Privacy, and Availability – Attacks Specific t	o lo	Γ –	Mal	vare
Propagation	n and Control in Internet of Things.				
	PRIVACY PRESERVATION				9
Privacy Pre	servation Data Dissemination - Privacy Preservation for IoT used in Smart Bu	ilding	у — Е	Explo	iting
Mobility So	cial Features for Location Privacy Enhancement in Internet of Vehicles – Light	weigh	nt an	d Ro	bust
Schemes fo	or Privacy Protection in Key personal IoT Applications: Mobile WBSN and Part	icipa	tory	Sens	sing.
	TRUST, AUTHENTICATION AND DATA SECURITY				9
I rust and I	rust Models for IoI – Emerging Architecture Model for IoI Security and Pri	vacy	– pi	rever	nting
Doth Conor	ed Access to Sensor Data – Authentication in 101 – Computational Security fo	r the	10 I rko	– Se	cure
	SOCIAL AWARENESS AND CASE STUDIES	etwo	iks.		0
UNIT-V	C Decentralized Governance Framework for Privacy and Trust in IoT - Policy	/ Bas	od /	\nnr(ach
for Informe	d Consent in IoT - Security and Impact of the IoT on Mohile Networks – Sec	, Das		ncerr	ns in
Social IoT -	- Security for IoT Based Healthcare – Smart cities	Junty	00	neen	10 111
	TO	TAL:	45 P	ERI	DDS
COURSE C	DUTCOMES				
At end of th	e course, learners will be able to				
CO1: Desc	ribe the basics of securing Internet of Things.				
CO2: Expla	in architecture and threats in IoT.				
CO3: Analy	ze various privacy schemes related to IoT				
CO4: Desc	ribe the authentication mechanisms for ior security and privacy.				
TEXT BOO	KS:				
1. Sha	ncang Li, Li Da Xu, "Securing the Internet of Things," Syngress (Elsevier) pu	blicat	ion,	201	7.
2. Fei	Hu, "Security and Privacy in Internet of Things (IoTs): Models, Algorithms, ar	nd			
Imp	lementations," CRC Press (Taylor & Francis Group), 2016.				
3. Arsl	ndeep Bahga, Vijay Madisetti, "Internet of Things – A Hands-on approach," V	PT			
Pub	lishers, 2014.				
REFEREN	CES:				
1. Alas	dair Gilchris, "lot Security Issues," Walter de Gruvter GmbH & Co. 2017.				
	. , , , , , , , , , , , , , , , , , , ,				

- 2. Sridipta Misra, Muthucumaru Maheswaran, Salman Hashmi, "Security Challenges and Approaches in Internet of Things," Springer, 2016.
- 3. Brian Russell, Drew Van Duren, "Practical Internet of Things Security," Packet Publishing Ltd, 2016.

21PAD19	MALWARE ANALYSIS	L	Т	Ρ	С
		3	0	0	3
COURSE OB	JECTIVES:				
The main obje	ectives of this course are:				
 Under 	stand the fundamentals of malware, types and its effects.				
 Identif 	y and analyze various malware types by static and dynamic analysis.				
To dea	al with detection, analysis, understanding, controlling, and eradication of	malw	are		
• To acc	quire knowledge about various functions of malware.				
To dea	al with malware analysis in android.				
UNIT-I	FIUNDATION OF MALWARE ANALYSIS				9
Introduction t	o Malware - Malware threats - Malware types: Viruses, Worms, Rootki	its, T	roja	ns, I	3ots,
Spyware, Adv	vare, Logic Bombs - Goals of Malware Analysis - AV Scanning – Hashing	g - Fi	ndin	g St	rings
-Packing and	Obfuscation - PE file format – Static - Linked Libraries and Functions - St	atic A	hal	ysis	tools
-Virtual Machi	nes and their usage in Malware analysis – Sandboxing - Basic dynamic a	analy	sis -	Mal	ware
execution - P	ocess Monitoring -Viewing processes - Registry snapshots.				
UNIT-II	STATIC ANALYSIS				9
The Stack –	Conditionals – Branching - Rep Instructions – Disassembly - Global and	d loca	al va	ariab	les -
Arithmetic op	erations - Loops - Function Call Conventions - C Main Method and	Offs	ets.	Por	able
Executable Fi	le Format - The PE File Headers and Sections - IDA Pro - Function anal	ysis ·	– Gi	aphi	ng –
The Structure	of a Virtual Machine - Analyzing Windows programs - Anti-static anal	ysis	tech	niqu	es –
obfuscation –	packing – metamorphism - polymorphism.				
UNIT-III	DYNAMIC ANALYSIS				9
Live malware	analysis - dead malware analysis - analyzing traces of malware - system	calls	s - a _	pi ca	ılls –
registries - ne	twork activities. Anti-dynamic analysis techniques - VM detection techniq	lues-	Eva	asion	
techniques -	Malware Sandbox - Monitoring with Process Monitor - Packet Sniffing	with	Wir	esha	irk –
Kernel vs. Us	er-Mode Debugging – OllyDbg – Breakpoints – Tracing - Exception Hand	ling ·	– Pa	atchi	ng.
UNIT-IV	MALWARE FUNCTIONS				9
Downloaders	and Launchers - Backdoors - Credential Stealers - Persistence Mecha	nism	s- ⊦	land	es –
Mutexes - Pr	ivilege Escalation - Covert malware launching- Launchers - Process I	nject	ion-	Pro	cess
Replacement	 Hook Injection – Detours - APC injection. 				
UNIT-V	ANDROID MALWARE ANALYSIS				9
Android Malw	are Analysis: Android architecture - App development cycle – APKToo	I- AF	'KIn	spec	tor -
Dex2Jar - JD	GUI - Static and Dynamic Analysis - Case Study: Smartphone (Apps) Se	ecurit	у.		
	101	AL:	45 P	'ERI	ODS
COURSE OU					
At end of the	course, learners will be able to		: -	. .	
CO1:Underst	and the various concepts of maiware analysis and their teo		ogie	S U Loci	isea. Isina
both st	atic and dynamic analysis techniques.	30 30	μh	103 0	Joing
CO3:Underst	and the methods and techniques used by professional ma	alwar	e	anal	ysts.
CO4: Analyze	e, debug, and disassemble any malicious software by malware analysis.				-
CO5: Unders	and the concept of Android malware analysis their architecture, and App	deve	elop	men	t.
TEXT BOOK	S:				
	-				

- 1. Michael Sikorski and Andrew Honig, "Practical Malware Analysis" by No Starch Press, 2012.
- 2. Bill Blunden, "The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the System", Second Edition, Jones & Bartlett Publishers, 2009.
- 3. Victor Marak, "Windows Malware Analysis Essentials" Packt Publishing, O'Reilly, 2015.

- 1. Ken Dunham, Shane Hartman, Manu Quintans, Jose Andre Morales, Tim Strazzere, "Android Malware and Analysis", CRC Press, Taylor & Francis Group, 2015.
- 2. Jamie Butler and Greg Hoglund, "Rootkits: Subverting the Windows Kernel", Addison-Wesley Professional,2005.

21PAD20	STEGANALYSIS	L	Τ	Ρ	С
		3	0	0	3
COURSE C	DBJECTIVES:				
The main o	bjectives of this course are:				
• To l	earn the basics of steganography to understand.				
• To a	letect and analyze hidden information through steganalysis.				
• Tor	naster different steganography frameworks and algorithms.				
• To a	analyze practical Application of Steganography Techniques				
• To (use of Detection and Distortion Techniques.				
UNIT-I	INTRODUCTION TO STEGANOGRAPHY				9
Overview, I	listory, Methods for hiding (text, images, audio, video, speech etc.), Issues: \$	Secu	rity,	Cap	acity
and Imperc	eptibility, Steganalysis: Active and Malicious Attackers, Active and passive st	egar	alys	sis.	
UNIT-II	STEGANOGRAPHY FRAMEWORK				9
Framework	s for secret communication (pure Steganography, secret key, public key	ste	gano	ogra	ohy),
Steganogra	phy algorithms (adaptive and non-adaptive).		-		
UNIT-III	STEGANOGRAPHY TECHNIQUES				9
Substitutior	system and biplane tools, Transform domain techniques, Spread spectrum	n an	d inf	form	ation
hiding, Sta	istical Steganography, Distortion and code generation techniques, Automa	ted g	gene	eratio	on of
English tex	t.		-		
UNIT-IV	STEGANALYSIS				9
Detecting h	idden information, Extracting hidden information, Disabling hidden Information	on, V	Vate	erma	rking
techniques	History, Basic Principles, applications, Requirements of algorithmic design is	ssue	s, E	valua	ation
and benchr	narking of watermarking system.				
UNIT-V	DETECTION & DISTORTION TECHNIQUES				9
Application Distortion,	s of Steganography, Steganography for Dissidents, Steganography for Crir Fechniques: LSB Embedding, LSB Steganalysis using primary sets, Texture I	ninal base	s. C d.	Detec	tion,
	TOT	AL:	45 P	PERI	ODS
COURSE O	DUTCOMES				
At end of th	e course, learners will be able to				
CO1: Learr	n various ways to hide information, including text, images, audio, video, and s	peec	:h.		
CO2: Unde	rstand and use different methods for secret communication, such as pure ste	gano	ogra	phy,	
secre	et key, and public key steganography.				
CO3: Apply statis	r practical techniques for hiding information, like substitution systems, biplane tical steganography.	; tool	s, ai	nd	
CO4: Deve	lop skills in finding, extracting, and disabling hidden information through stega	analy	/sis.		
CO5: Unde	rstand techniques like LSB Embedding and Texture-based methods for detect	ion a	nd c	disto	rtion.
TEXT BOO	KS:				
1.	Stefan Katzenbelsser and Fabien A. P. Petitcolas, "Information hiding	g te	chni	ques	s for
	Steganography and Digital Watermarking", ARTECH House Publishers.2011				

- 2. Peter Wayner, "Disappearing Cryptography–Information Hiding: Steganography & Watermarking", Morgan Kaufmann Publishers, New York, 2002.
- 3. Hang Zhou, Kejiang Chen, Zehua Ma, Feng Wang," Triangle Mesh Watermarking and Steganography", Springer, 2023.

- 1. Ingemar J. Cox, Matthew L. Miller, Jeffrey A. Bloom, Jessica Fridrich, TonKalker, "Digital Watermarking and Steganography", Margan Kaufmann Publishers, New York, 2011.
- 2. Jessica Fridrich, "Steganography in Digital Media: Principles, Algorithms, and Applications", Cambridge university press, 2010.

21PAD21	BIOMETRIC SECURITY	L	Т	Р	С	
		3	0	0	3	
COURSE O	BJECTIVES:		<u> </u>			
The main ol	bjectives of this course are:					
• To le	earn various biometric technologies.					
• To le	earn the biometric recognition systems.					
• To g	ain knowledge on iris recognition.					
• Tok	now about hand geometry and voice biometrics.					
• To le	earn methods for security in biometric systems.					
UNIT-I	INTRODUCTION				9	
Introduction	- Operation of a biometric system - Verification versus identification -	Perf	orma	ance	of a	
biometric sy	vstem – Applications of biometrics – Biometric characteristics.					
UNIT-II	FINGERPRINT AND FACE RECOGNITION				9	
Introduction	- Fingerprint Sensing- Feature extraction - Matching - Perform	ance	ev	alua	ion–	
Introduction	to Face Recognition - Face Recognition Techniques - Databases - Adv	ance	d C	orrel	ation	
Filters – Tei	nsor faces– Active Appearance Models for Face Recognition – Face Supe	er-res	solut	ion ι	ising	
Locality Pre	serving Projections.					
UNIT-III	IRIS RECOGNITION				9	
History of Ir	is Recognition – Active Contours – Flexible Generalized Embedded Coor	dinat	tes -	- Fou	rier-	
based Trigo	phometry – Correction for Off-Axis Gaze – Detecting Eyelashes by Stat	istica	I Inf	eren	ce –	
Excluding E	Eyelashes by Statistical Inference Alternative Score Normalization Rule	es −	Ada	apting	g for	
Large-Scale	Applications.					
UNIT-IV	HAND GEOMETRY GAIT RECOGNITION AND VOICE BIOMETRICS				9	
History of H	and Geometry – Applications – Technology – Performance – Standardiza	tion -	- Int	rodu	ction	
to Gait Rec	ognition – HumaniD Gait Challenge Problem – Recognition Approaches	s — Ir Juaniu	itroc		on to	
Voice Biom	etrics – identity information in the speech signal – Feature Extraction – To	keniz	zatio	n –	l ext-	
dependent						
UNIT-V	BIOMETRIC AUTHENTICATION				9	
Introduction	to Palmprint Authentication System – System Framework – Recognition	Engi	ne -	- On	Line	
Signature V	erification – Resources for On-Line Signature Verification – Biometrics Se	ecurit	y Oʻ	vervi	ew –	
Vulnerabiliti	es in Biometric Systems – Biometric Template Security – Encoded Biome	tric S	Sche	mes	•	
	TO	ΓΔΙ ·	45 F	FRI		
COURSE O	UTCOMES		101			
At end of th	e course, learners will be able to					
CO1: Identi	fy the various Biometric technologies.					
CO2: Desig	n of various biometric recognition systems for the organization.					
CO3: Familiarize with concepts of iris recognition.						
CO4: Apply hand geometry and voice biometrics in various applications.						
	and the need for security in biometric systems.					
	KS:					
1. <i>F</i>	A.K. Jain, P. Flynn, A.A. Koss, Handbook of Biometrics, Springer, 2008.					

- 2. Samir Nanavati, Michael Thieme, Raj Nanavati, "Biometrics Identity Verification in a Networked World", WILEY- Dream Tech, 2009.
- 3. Paul Reid "Biometrics for Network Security", Pearson Education, 2004.

- 1. John D. Woodward, Jr. "Biometrics- The Ultimate Reference"-Wiley Dreamtech.1st edition, 2003.
- 2. John R. Vacca, "Biometric Technologies and Verification Systems", Elsevier Inc, 2007.

21PAD22	BLOCKCHAIN AND CRYPTOCURRENCY	L	Т	Р	С
		3	0	0	3
COURSE C	DBJECTIVES:	-	-	-	-
The main o	bjectives of this course are:				
 То ц 	understand the mechanism of Blockchain and Cryptocurrency.				
 Το ι 	understand the functionality of current implementation of blockchain technol	oloav			
• To i	inderstand the required cryptographic background.				
• To e	explore the applications of Blockchain to cryptocurrencies and understan	dina	limi	tatior	ns of
curr	ent Blockchain.	g			
• An e	exposure towards cryptocurrency ecosystem.				
UNIT-I	INTRODUCTION TO CRYPTOGRAPHY AND CRYPTOCURRENCIES				9
Cryptograp	hic Hash Functions, Hash Pointers and Data Structures, Digital Signature	es, Pi	ublic	: Key	's as
Identities,	A Simple Cryptocurrency- Decentralization-Centralization vs. Decentrali	zatio	n-D	istrib	uted
consensus,	Consensus with- out identity using a blockchain, Incentives and proof of w	/ork.	Sim	ple L	.ocal
Storage, Ho	ot and Cold Storage, Splitting and Sharing Keys, Online Wallets and Exc	hang	jes,	Payr	nent
Services, T	ransaction Fees, Currency Exchange Markets.				
UNIT-II	MECHANICS OF BITCOIN				9
Bitcoin tran	sactions, Bitcoin Scripts, Applications of Bitcoin scripts, Bitcoin blocks, The	Bit-	coin	netv	vork,
Limitations	and improvements.				
UNIT-III					9
The task of	Bitcoin miners, Mining Hardware, Energy consumption and ecology, Mir	ning p	looc	s, Mi	ning
incentives a	and strategies - Anonymity Basics, How to De-anonymize Bitcoin, Mixi	ng, E	Dece	entra	lized
Mixing, Zer	ocoin and Zerocash.				
					•
UNIT-IV	COMMUNITY, POLITICS, AND REGULATION	Deet		f D:+	9
Consensus	IN BILCOIN, BILCOIN CORE SOftware, Stakeholders: Who's in Charge,	ROOL	S O		coin,
Governmer	its Notice on Bitcoin, Anti Money Laundering Regulation, New York's Bit	LICE	nsei	Prop	osai.
Bitcoin as a	a Platform: Bitcoin as an Append only Log, Bitcoins as Smart Property, S	becur		iuiti f	Party
Lotteries in	Bitcoin, Bitcoin as Public Randomness, Source-Predictioniviarkets, and	кеа		oria	Data
Feeds.					
	ALTCOINS AND THE CRYPTOCURRENCY ECOSYSTEM				9
Altcoins: Hi	story and Motivation A Few Altcoins in Detail Relationship Between Bit	coin	and	Alto	nins
Merge Mini	ng-Atomic Crosschain Swaps-6 Bitcoin Backed Altcoins, Side Chains, Eth		m a	nd S	mart
Contracts		lereu	ma		man
Contracts.					
	ΤΟ	TAL:	45 F	PERI	ODS
COURSE C	DUTCOMES				
At end of th	e course, learners will be able to				
CO1: Unde	rstand and apply the fundamentals of Cryptography in Cryptocurrency.				
CO2: Summarize about various operations associated with the life cycle of Block chain and					
Crypt	tocurrency.				
CO3: Desc	ribe the methods for verification and validation of Bitcoin transactions.				
CO4: Demo	onstrate the general ecosystem of several Cryptocurrency.				
CO5: Sumr	narize the principles, practices and policies associated Bitcoin business.				

- 1. Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. "Bitcoin and cryptocurrency technologies: a comprehensive introduction", Princeton University Press, 2016.
- 2. Antonopoulos, A. M. "Mastering Bitcoin: unlocking digital cryptocurrencies. Oreilly Media, Inc.", 2014.
- 3. Makoto Yono, "Blockchain and Crypto Currency", Economic, Law and Institutions in Asia Pacific, 1st Edition, 2020.

- 1. Franco, P. "Understanding Bitcoin: Cryptography, engineering and economics", John Wiley and Sons, 2014.
- 2. Yadav Satya Prakash, "Blockchain And Cryptocurrency", I K International, 2022.

			-		^
ZIPADZ3	INFORMATION SECURITY MANAGEMENT	L 2	1	P	し 2
		3	U	U	ა
The main ob	ectives of this course are:				
	quire knowledge about system security related incidents and insight on p	oten	tial (defer	ICes
	unter measures against common threat/vulnerabilities.	oton	licii (20101	
• To p	rovide the knowledge of installation configuration and troubleshooti	na o	f inf	form	ation
secur	ity devices.				
• To ma	ake familiarize on the tools and common processes in information securi	tv au	dits.		
• To ex	plore about data management.	,			
UNIT-I				/	9
Identify And	Access Management (IdAM), Networks (Wired And Wireless) Devices	₃, En∘	dpo	ints/E	=dge
Devices, Sto	rage Devices, Servers, Infrastructure Devices (e.g. Routers, Firewall Ser	vices	s), (Jomp	outer
Assets, Serv	ers And Storage Networks, Content management, IDS/IPS.				
UNIT-II	SECURITY DEVICE MANAGEMENT				9
Different typ	es of information security devices and their functions. Technical	and	con	figur	ation
specification	s architecture concepts and design patterns and how these contribute	to th	ne si	ecuri	ity of
design and d	evices.			000	.y 0.
UNIT-III	DEVICE CONFIGURATION				9
Common iss	ues in installing or configuring information security devices, Methods to r	esolv	e th	iese	
issues, Meth	ods of testing installed/configured information security devices.				
	INFORMATION SECURITY AUDIT PREPARATION				٩
Establish the	nature and scope of information security audits. Roles and responsibiliti		dont	ify th	3
procedures/c	uidelines/checklists. Identify the requirements of information security a	udite	anc	d nre	nare
for audits in a	advance I jaise with appropriate people to gather data/information requir	red fr	or inf	form	ation
security aud	ts Security Audit Review - Organize data/information required for inf	forma	ation) sec	
audits using	standard templates and tools. Audit tasks, Reviews, Comply with the orga	nizati	ion's	s poli	cies.
standards. p	ocedures, guidelines and checklists. Disaster Recovery Plan.			. 6.0	,
, r					
UNIT-V	DATA AND INFORMATION MANAGEMENT				9
Fetching the	data/information from reliable sources, Checking that the data/inform	ation	is	accu	rate,
complete and	d up-to-date, Rule-based analysis of the data/information, Insert the data	ta/inf	orm	ation	into
the agreed for	ormats, Reporting unresolved anomalies in the data/information.				
	TO	FAL:	45 F	PRI	ODS
COURSE OL	JTCOMES				
At end of the	course, learners will be able to				
CO1: Classif	y security devices and summarize the functions of it.				
CO2: Unders	the procedure for security audit and generate reports				
CO4: Unders	stand policies, standards of audit process.				
CO5: Analyz	e data and prepare reports.				

- 1. Information Systems Security: Security Management, Metrics, Frameworks and Best Practices, Nina Godbole, Wiley, 2017.
- 2. Rhodes-Ousley, Mark. Information Security: The Complete Reference, Second Edition, Information Security Management: Concepts and Practice. New York, McGraw-Hill, 2013.
- 3. Christopher J. Alberts, Audrey J. Dorofee, Managing Information Security Risks, Addison-Wesley Professional, 2004.

- 1. Andrew Vladimirov Michajlowski, Konstantin, Andrew A. Vladimirov, Konstantin V.Gavrilenko, Assessing Information Security: Strategies, Tactics, Logic and Framework, IT Governance Ltd, O'Reilly 2010.
- 2. Christopher J. Alberts, Audrey J. Dorofee, Managing Information Security Risks, Addison-Wesley Professional, 2004.

21PAD24	DIGITAL FORENSICS	L	T	P	<u>C</u>		
		3	0	0	3		
	bjectives of this course are:						
	ojectives of this course are.						
• To .	inderstand the procedure for processing, analysis and validation of digital	ovide	ance	<u>د</u>			
	earn the principles of network forensics	Cviuc	1100				
• To c	ain the principles of network forensies.	oren	sics				
• To s	tudy the Indian and International cyber laws.	0.011	0.00	•			
	······································						
UNIT-I	INTRODUCTION				9		
Computer for	prensics fundamentals, Benefits of forensics, computer crimes, computer for	orens	sics	evide	ence		
and courts,	legal concerns and private issues. Understanding Computing Investigation	າs — F	roc	edur	e for		
corporate H	igh-Tech investigations, understanding data recovery work station and sof	tware	э, сс	ondu	cting		
and investig	jations.						
Doto ocquir	DATA ACQUISITION		ot o	oquic	9 ition		
Data acquis	suion- understanding storage formats and digital evidence, determining in	e be:	si ac ionc	ror	moto		
network ac	quisition tools, validating data acquisitions, performing RAID data act	านเรเน	10115	, iei	note		
Hetwork act							
UNIT-III	FORENSIC PROCESSING				9		
Processing	crimes and incident scenes, securing a computer incident or crime, seizin	g dig	ital	evide	ence		
at scene, st	oring digital evidence, obtaining digital hash, reviewing case.	0 0					
UNIT-IV	EMAIL, MOBILE AND CLOUD FORENSICS				9		
E-mail and	Social Media Investigations: Exploring the Role of E-mail in Investigation	ins- E	Expl	oring	, the		
Roles of the	e Client and Server in E-mail- Investigating E-mail Crimes and Violation-	Unde	ersta	andin	g E-		
mail Server	s- Using Specialized E-mail Forensics Tools- Applying Digital Forensics	to S	Socia	al Me	edia.		
Mobile Dev	rice Forensics and the Internet of Anything: Understanding Mobile D	evice	e F	oren	sics-		
Understand	ing Acquisition Procedures for Mobile Devices- Understanding Forensics	; in th	ne Ir	ntern	et of		
Anything. C	Cloud Forensics: An Overview of Cloud Computing Legal Challenges in	Clou	d F	oren	sics-		
Technical C	challenges in Cloud Forensics- Acquisitions in the Cloud- Conducting a Cl	oud I	nve	stiga	tion-		
Tools for Cl	oud Forensics.						
Cybercrime	CIBER LAWS AND CASE STUDIES	orty		horo	9 rimo		
against Nat	ion Introduction to Cyber Laws, Cyber Laws in India and case studies.	torn:	ation	oeic al C	vhor		
laws and ca	se studies: Cyber crime Legislation in the Netherlands - Cyber laws in Mala	aveia			rimo		
laws in the	UK - Cybercrime laws of the USA - Australian laws related to privacy	ly Sia	- Oy	buiu	mine		
TOTAL:45 PERIOD							

COURSE OUTCOMES

At end of the course, learners will be able to

CO1: Explain the benefits and procedure for cybercrimes.

CO2: Determine how to perform data acquisition.

CO3: Analyse and validate evidences collected from various sources.

CO4: Identify issues in email investigation, mobile device forensics and cloud forensics.

CO5: Apply cyber law for different case studies.

TEXT BOOKS:

- 1. Nelson, Phillips, Steuart, "Computer Forensics and Investigations", Cengage Learning, Sixth Edition, 2018.
- 2. Dejey, Murugan, "Cyber Forensics", Oxford University Press, 2018.
- 3. Nelson, B, Phillips, A, Enfinger, F, Stuart, C., "Guide to Computer Forensics and Investigations, 2nd ed., Thomson Course Technology, 2006,

- 1. John R. Vacca, "Computer Forensics", Firewall Media, New Delhi, 2009.
- 2. Keith J. Jones, Richard Bejtlich, Curtis W. Rose, "Real Digital Forensics", Addison Wesley Pearson Education, 2005.

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY (Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

VERTICAL-III

21PAD25	BUSINESS ANALYTICS	L	Т	Ρ	С
		3	0	0	3
COURSE O	DBJECTIVES: 21PAD25		L		
The main o	bjectives of this course are:				
• To	understand the Analytics Life Cycle.				
• To	comprehend the process of acquiring Business Intelligence.				
• To	understand various types of analytics for Business Forecasting.				
• To	model the supply chain management for Analytics.				
• To	apply analytics for different functions of a business.				
UNIT-I	INTRODUCTION TO BUSINESS ANALYTICS				9
Analytics a	nd Data Science – Analytics Life Cycle – Types of Analytics – Business Pro	blen	ו De	efiniti	on –
Data Collec	tion – Data Preparation – Hypothesis Generation – Modeling –Validating and v	/erify	ing a	analy	/tical
results, Cor	mmunicating and presenting results to clients and Driving organizational chan	ge a	nd a	sses	sing
impact- Int	erpretation – Deployment and Iteration.				
UNIT-II	BUSINESS INTELLIGENCE				9
Data Ware	houses and Data Mart - Knowledge Management – Types of Decisions –	Dec	isior	n Ma	ıking
Process - E	Decision Support Systems – Business Intelligence – OLAP – Analytic function	s.			
	BUSINESS FORECASTING				9
Introduction	to Business Forecasting and Predictive analytics - Data Mining and Pi	redic	live	Ana	IYSIS
Nodeling -L	Linear Regression, Cluster, CAR I and Neural Network model- Data Visualizat	ion a	na P	Analy	TICS-
Charts(Bar	S-Pie-Line-Scatter-Wap-Bubble-Box & Whisker-Tree map - Heat map-Cil	rcie	and	Are	a) -
worksneet	Dashboard and Story Board creation.				
UNIT-IV	HR & SUPPLY CHAIN ANALYTICS				9
Human Re	sources – Planning and Recruitment – Training and Development - Supply	v cha	ain r	netwo	ork -
Planning D	emand. Inventory and Supply – Logistics – Analytics applications in HR & Su	, vlaa	Cha	in.	
5					
UNIT-V	MARKETING & SALES ANALYTICS				9
Marketing S	Strategy, Marketing Mix, Customer Behavior – selling Process – Sales Planni	ng –			
Analytics a	oplications in Marketing and Sales.				
	TOI	AL:	45 P	ERI	ODS

BoS Chairman

COURSE OUTCOMES

At end of the course, learners will be able to

- **CO1:** Explain the real world business problems and model with analytical solutions.
- **CO2:** Identify the business processes for extracting Business Intelligence.
- CO3: Apply predictive analytics for business fore-casting.
- **CO4:** Apply analytics for supply chain and logistics management.
- CO5: Use analytics for marketing and sales.

TEXT BOOKS:

- 1. James H. Stock and Mark W. Watson ,"Introduction to Econometrics", Third Edition, Addison-Wesley, 2017.
- 2. Marc J. Schniederjans, Dara G. Schniederjans and Christopher M. Starkey, "Business Analytics Principles, Concepts, and Applications What, Why, and How", 1st Edition, Pearson Ed, 2014.
- Christian Albright S and Wayne L. Winston, "Business Analytics Data Analysis and Decision Making", 5th edition, Cengage Learning, 2015,

- 1. R. Evans James, "Business Analytics", 2nd Edition, Pearson Education, 2017.
- 2. R N Prasad, Seema Acharya, Fundamentals of Business Analytics, 1st Edition, Wiley, 2011
- **3.** Philip Kotler and Kevin Keller, "Marketing Management", 15th edition, PHI, 2016.

2100026			т	Р	<u> </u>
211 AD20	FREDICTIVE ANALTINGS	ר ר	י 0	0	3
COURSEC		3	U	U	5
The main o	biectives of this course are:				
	Avalain terminology, technology and applications of predictive analysis				
	apply data preparation techniques and deperate appropriate association rul	95			
• 10 8	liscuss various descriptive models, their morits, demorits and application	63.			
• 100	describe verieus predictive modelling methods				
• 100	describe various predictive modelling methods.				
• 101	earn about advanced text visualization techniques.				
UNIT-I	INTRODUCTION TO PREDICTIVE ANALYTICS				9
Overview o	f Predictive Analytics- Setting Up the Problem - Data Understanding- Single	e Var	riabl	e- Da	ata
Visualizatio	n in One Dimension- Data Visualization, Two or Higher Dimensions-The Va	alue	of S	tatist	ical
Significance	e- Pulling It All Together into a Data Audit – Case study: Churn prevention.				
UNIT-II	DATA PREPARATION AND ASSOCIATION RULES				9
Data Prepa	ration- Variable Cleaning- Feature Creation- Item sets and Association Rul	es –	Terr	ninol	ogy-
Parameter	Settings- How the Data Is Organized- Measures of Interesting Rules - Dep	loyin	g As	soci	ation
Rules- Prot	plems with Association Rules- Building Classification Rules from Association	on Ru	lles	- Hos	spital
Readmissio	on.				
UNIT-III	MODELLING				9
Descriptive	Modeling- Data Preparation Issues with Descriptive Modeling- Principal Cor	npon	ent	Anal	ysis-
Clustering /	Algorithms- Interpreting Descriptive Models- Standard Cluster Model Interp	retati	on.		
					0
Decision Tr	PREDICTIVE MODELLING	Nai		3010	3
Regression	Models - Linear Regression - Other Regression Algorithms- Case study: n	- Mai rodic	tivo	woh	5 -
Analytics	models - Linear Negression - Other Negression Algontinns- Case study. p	Teulo	,uve	web	
Analytics.					
UNIT-V	TEXT MINING				9
Motivation	for Text Mining- A Predictive Modeling Approach to Text Mining- Structure	d vs.	Uns	truct	ured
Data- Why	Text Mining Is Hard- Data Preparation Steps- Text Mining Features Modelin	g witl	h Te	ext M	ining
Features- F	Regular Expressions- Case Studies:- Survey Analysis.	•			Ū
	TO	TAL:	45 F	PERI	ODS
COURSE C	DUTCOMES				
At end of th	e course, learners will be able to				
CO1: Expla	in terminology, technology and applications of predictive analysis.				
CO2: Apply	data preparation techniques to effectively interpret big data.				
CO3: Discu	iss various descriptive models, their merits, demerits and application.		ممان	4:000	_
	nue principles of predictive analytics and apply them to achieve real, pragmate the features and applications of text mining	ialiC	5010	nions	.
	מני דוי ויסמנוובס מות מסטווכמווטווס טו נבאו ווווווווש.				

- 1. Dean Abbott, "Applied Predictive Analytics-Principles and Techniques for the Professional in Data Analyst", Wiley, 2014
- 2. Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, 3rd Edition ,Elsevier, 2012
- 3. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning-Data Mining, Inference, and Prediction, 2nd Edition, Springer Verlag, 2009.

- 1. Conrad Carlberg, "Predictive Analytics: Microsoft Excel", First Edition, Que Publishing, 2012.
- 2. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani "An Introduction to Statistical Learning with Applications in R", Springer, 2013.
- 3. Alberto Cordoba, "Understanding the Predictive Analytics Lifecycle", 1st Edition, Wiley, 2014.

21PAD27	BIG DATA ANALYTICS	L	Т	Ρ	С
		3	0	0	3
COURSE O	DBJECTIVES:				
The main o	bjectives of this course are:				
 To u 	nderstand the fundamental concepts of big data and its importance in the	mod	ern	worl	d.
 To le 	arn about data discovery techniques and open source technologies for bi	g da	ta ar	nalyt	ics.
 To ut 	nderstand the basics of Hadoop and the Hadoop ecosystem.				
 To gate 	ain knowledge on Hadoop related tools such as HBase, Cassandra, Pig a	ind H	live	for	
bigda	ata analytics.				
 To u 	nderstand the concept of data mining and its role in big data analytics.				
UNIT-I	INTRODUCTION TO BIG DATA				9
Big Data a	nd its Importance – Four Vs of Big Data – Drivers for Big Data –Introdu	uction	ו to	Bia	Data
Analytics –	Big Data Analytics applications.			3	
··· ·					
UNIT-II	BIG DATA TECHNOLOGIES				9
Hadoop's F	Parallel World – Data discovery – Open-source technology for Big Data	Ana	lytics	s – c	loud
and Big Da	ta – Predictive Analytics – Mobile Business Intelligence and Big Data.				
UNIT-III					9
Big Data -	- Apache Hadoop & Hadoop Eco System – Moving Data in and (out c	DT H	adoo	op –
Understand	aing inputs and outputs of MapReduce - Data Serialization.				
UNIT-IV	HADOOP ARCHITECTURE				9
RDBMS Vs	Hadoop, Hadoop Overview, Hadoop distributors, HDFS, HDFS Daemon	s, Ar	ator	ny o	f File
Write and I	Read., Name Node, Secondary Name Node, and Data Node, HDFS Arc	hitec	ture,	Ha	doop
Configurati	on, Map Reduce Framework, Role of HBase in Big Data processing, HIVI	E, Pl	G.		
					•
UNIT-V	DATA ANALYTICS WITH R		<u> </u>		9 Iadia
	1, Supervised Learning, Unsupervised Learning, Collaborative Filterii	ng, t	SOCI	ai iv	ledia
Analytics, N	Nobile Analytics, big Data Analytics with bigR.				
	ΤΟ	TAL:	45 P	ERI	ODS
COURSE C	DUTCOMES				
At end of th	e course, learners will be able to				
CO1: Analy	ze the drivers for big data and the applications of big data analytics.				
CO2: Explo	ore data discovery techniques and open source technologies for big data	analy	tics.		
CO3: Gras	o the fundamentals of Hadoop and the Hadoop ecosystem, a collection of	i tool	s an	d	
CO4. Explo	noiogles for big data management.	l the '	role	of HF	Rase
in Bio	g Data processing.				-430
CO5: Gain hands-on experience with data mining techniques and tools, encompassing data					
preprocessing, feature selection, and model evaluation.					
B.Tech.	AI & DS BoS Chairman R-2021(CHOICE BASED C	REDIT	SYST	FEM)	
				,	

- 1. Seema Acharya, Subhasini Chellappan,"Big Data Analytics", First Edition, Wiley 2015.
- 2. Michael Minelli, Michehe Chambers, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business", First Edition, Ambiga Dhiraj, Wiely CIO Series, 2013.
- 3. "Hadoop: The Definitive Guide", Tom White, Third Edition, O"Reilly Media, 2012.

- **1.** Arvind Sathi," Big Data Analytics: Disruptive Technologies for Changing the Game", First Edition,IBM Corporation, 2012.
- 2. Jay Liebowitz ,"Big Data and Business Analytics", , Auerbach Publications, First Edition, CRC press ,2013.
- 3. Tom Plunkett, Mark Hornic, "Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop", First Edition, McGraw-Hill/Osborne Media, Oracle press, 2013.

21PAD28	IOT DOMAIN ANALYTICS	L	Т	Ρ	С	
		3	0	0	3	
COURSE	DBJECTIVES:					
The main o	bjectives of this course are:					
• To • To pro	dentify and analyze the various challenges faced in implementing IoT anal gain a foundational understanding of networking basics, including network tocols, and communication models.	ytics topo	solı logie	ution es,	S.	
 To mai 	understand the key components of IoT analytics systems to achieve modu ntainability.	larity	and			
 To a data 	apprehend data quality, assessing the accuracy, completeness, and consis a.	stenc	y of	loT		
• To	relate feature engineering techniques to prepare IoT data for machine lear	ning	algo	rithm	าร.	
UNIT-I	IOT ANALYTICS AND CHALLENGES				9	
Introduction	n to IoT, applications, IoT architectures, introduction to analytics, IoT analy	tics c	hall	enge	es.	
UNIT-II	IOT DEVICES AND NETWORKING PROTOCOLS				9	
loT devices protocols, /	s, Networking basics, IoT networking connectivity protocols, IoT networkin Analyzing data to infer protocol and device characteristics.	g dat	a m	essa	iging	
UNIT-III	IOT ANALYTICS FOR THE CLOUD				9	
Introduction	n to elastic analytics, Decouple key components, Cloud security and analytic	cs, D	esig	ning	data	
processing	for analytics, Applying big data technology to storage.					
UNIT-IV	EXPLORING IOT DATA				9	
Exploring a Statistical a	and visualizing data, Techniques to understand data quality, Basic time analysis.	e ser	ies	anal	ysis,	
UNIT-V	DATA SCIENCE FOR IOT ANALYTICS				9	
Introduction	n to Machine Learning, Feature engineering with IoT data, Validation method	ds, U	ndei	rstan	ding	
the bias-va	ariance tradeoff, Use cases for deep learning with IoT data.					
	ТО	TAL:	45 P	ERI	ODS	
COURSE	DUTCOMES					
At end of th	ne course, learners will be able to					
CO1: Ident	ify and analyze the various challenges faced in implementing IoT analytics	solu	tions	S.		
CO2: Analy	ze IoT data to infer protocol and device characteristics, enabling network	optim	izati	on a	ind	
devic	e management.					
	ore cloud security considerations for lot analytics, ensuring data privacy ar	ia pr	otec	tion		
ayan CO4: Empl	si cyberallacks.	teneg	s a	nd		
consi	stency of IoT data.		, u			
CO5: Implement validation methods to evaluate the performance and generalization ability of machine					nine	
learn	CO5: Implement validation methods to evaluate the performance and generalization ability of machine					
learning models in IoT analytics.						

- 1. Minteer, Andrew, "Analytics for the Internet of Things (IoT)",1st Edition, Packt Publishing Ltd. 2017.
- 2. Robert Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salgueiro, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", First Edition, CISCO Press, 2017.
- 3. Kai Hwang, Min Chen," Big-Data Analytics for Cloud, IoT and Cognitive Computing", First Edition ,Wiley,2017.

- 1. Hwaiyu Geng, Internet of Things and Data Analytics Handbook, 1st Edition, Wiley, 2016.
- 2. John Soldatos, Building Blocks for IoT Analytics Internet-of-Things Analytics, 1st Edition ,River Publishers Gerardus Blokdyk,2017.
- **3.** Gerardus Blokdyk," IoT Analytics A Complete Guide", 1st Edition, 5starcooks,2019.

21PAD29	ANALYTICS IN CLOUD COMPUTING	L	Т	Ρ	С
		3	0	0	3
COURSE C	BJECTIVES:				
The main ol	bjectives of this course are:				
• Tou	inderstand the principles of cloud architecture, models and infrastructure.				
• Tou	inderstand the concepts of virtualization and virtual machines.				
• Tog	ain knowledge about virtualization Infrastructure.				
• To e	explore and experiment with various Cloud deployment environments.				
• To le	earn about the security issues in the cloud environment.				
UNIT-I	CLOUD ARCHITECTURE MODELS AND INFRASTRUCTURE				9
Cloud Arch	itecture: System Models for Distributed and Cloud Computing – NIST	Clou	d C	omp	utina
Reference	Architecture – Cloud deployment models – Cloud service models: Clo	oud l	nfra	struc	ture:
Architectura	I Design of Compute and Storage Clouds – Design Challenges.				
UNIT-II	VIRTUALIZATION BASICS				9
Virtual Mac	hine Basics – Taxonomy of Virtual Machines – Hypervisor – Key Conce	pts –	Virt	Jaliza	ation
structure -	Implementation levels of virtualization - Virtualization Types: Full Virt	ualiza	atior	– ו	Para
Virtualizatio	n – Hardware Virtualization – Virtualization of CPU, Memory and I/O device	es.			
UNIT-III	VIRTUALIZATION INFRASTRUCTURE AND DOCKER				9
Desktop Vir	tualization – Network Virtualization – Storage Virtualization – System-level	of O	pera	ating	
Virtualizatio	n – Application Virtualization – Virtual clusters and Resource Managemer	וt –C	onta	ainer	s vs.
Virtual Mac	hines – Introduction to Docker – Docker Components – Docker Container	– Do	ocke	er Ima	ages
and Reposi	tories.				
					0
Google Apr	CLOUD DEPLOTIMENT ENVIRONMENT	ote	Fue	alvnt	9
OpenStack	Engine – Amazon Aws – Microsoft Azure, Cloud Software Environmen	115 –	Euc	aiypi	us –
ореноваск.					
UNIT-V	CLOUD SECURITY				9
Virtualizatio	n System-Specific Attacks: Guest hopping – VM migration attack – h	vperj	acki	ng.	Data
Security and	d Storage; Identity and Access Management (IAM) - IAM Challenges - IAM	/ Arc	hite	cture	and
Practice.					
	TO	FAL:	45 F	ERI	ODS
COURSE C	UTCOMES				
At end of the course, learners will be able to					
CO1: Unde	rstand the design challenges in the cloud.				
CO2: Apply	the concept of virtualization and its types.				
CO3: Exper	iment with virtualization of hardware resources and Docker.				
CO4: Devel	op and deploy services on the cloud and set up a cloud environment.				

CO5: Explain security challenges in the cloud environment.

- Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers,1st Edition, 2013.
- 2. James Turnbull, "The Docker Book", O'Reilly Publishers, 1st Edition, 2014.
- 3. Krutz, R. L., Vines, R. D, "Cloud security. A Comprehensive Guide to Secure Cloud Computing", Wiley Publishing, 1st Edition, 2010.

- 1. Rajkumar Buyya, James Broberg, Andrez M Goscinski, "Cloud Computing: Principles and Paradigms", Wiley International, 1st Edition,2013
- 2. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 1st Edition, 2005.
- 3. Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy: an enterprise perspective on risks and compliance", O'Reilly Media, Inc.,1st Edition ,2009.

21PAD30	MULTIVARIATE DATA ANALYSIS	L	Т	Ρ	С		
		3	0	0	3		
COURSE C	DBJECTIVES:						
The main o	bjectives of this course are:						
 Το ι 	understand the fundamental concepts of univariate, bivariate, and multivariate	e tecł	nniq	ues.			
• To a	conceptualize research models with variables and engage in effective data co	ollecti	ion p	oract	ices.		
• To e	explore different approaches to factor analysis and interpret the results obtain	ied.					
• To	apprehend the application of moderation models and their role in unders	stanc	ling	com	plex		
rela	tionships.						
• To g	gain proficiency in multiple discriminant analysis and its applications in group	class	sifica	ation			
UNIT-I	INTRODUCTION				9		
Uni-variate	Bi-variate and Multi-variate techniques – Classification of multivariate techni	iques	s –G	uide	lines		
for multivar	iate analysis and interpretation.						
UNIT-II	PREPARING FOR MULTIVARIATE ANALYSIS				9		
Conceptua	ization of research model with variables, collection of data Approaches	s for	dea	aling	with		
missing dat	a – Testing the assumptions of multivariate analysis.			•			
UNIT-III	MULTIPLE LINEAR REGRESSION ANALYSIS, FACTOR ANALYSIS				9		
Multiple Lin	ear Regression Analysis - Inferences from the estimated regression function	-Val	idati	ion o	f the		
modelAp	proaches to factor analysis – interpretation of results.						
UNIT-IV	LATENT VARIABLE TECHNIQUES				9		
Confirmato	ry Factor Analysis, Structural equation modelling, Mediation models, Mc	dera	tion	mo	dels,		
Longitudinal studies.							
UNIT-V	ADVANCED MULTIVARIATE TECHNIQUES	<u> </u>			9		
Multiple Discriminant Analysis, Logistic Regression, Cluster Analysis, Conjoint Analysis, multidimensional							
scaling.							
	TO	Γ <u>ΔΙ -</u>	15 D		פחר		
COURSE (DUTCOMES	ΛL.	-		000		
At end of th	e course, learners will be able to						
CO1: Demonstrate a deep understanding of the concents and methods used in multivariate data analysis							
including their strengths and limitations.							
CO2 : Use advanced techniques to conduct thorough and insightful analysis of multivariate data. and							
interpret the results accurately and effectively.							
CO3: Show a strong understanding of real-world problems, and conduct deep analysis using appropriate							
methods to draw reasonable conclusions.							
CO4: Write a clear and insightful report for a real-world case study, including well-supported and convincing							
details.							
CO5 : Make better business decisions by effectively using advanced techniques in data analytics.							

- 1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham & William C. Black, "Multivariate Data
- 2. Analysis", Pearson Education, 7th Edition, New Delhi, 2009.
- 3. Barbara G. Tabachnick, Linda S.Fidell, "Using Multivariate Statistics", 6th Edition, Pearson, 2012.
- 4. Richard A Johnson and Dean W.Wichern," Applied Multivariate Statistical Analysis", 6th Edition, Prentice Hall, New Delhi, 2012.

- 1. David R Anderson, Dennis J Seveency, and Thomas A Williams, Statistics for Business and Economics, Thompson, 13th Edition, Singapore, 2019,
- 2. Michael Jambu, "Exploratory and multivariate data analysis", 1st Edition, Academic Press Inc., 1990,
- 3. T.W. Anderson, "An Introduction to Multivariate Statistical Analysis", 3rd Edition, Wiley, 2009,

21PAD31	GEOSPATIAL DATA ANALYSIS	L	Τ	Ρ	С		
		3	0	0	3		
	UBJECTIVES:						
	blectives of this course are.						
• 10	design geographic information esigned database						
• 10 Te	design geographic information science database.						
• 10 T-	ramiliar with the modeling techniques.						
• 10 T-	Learn spatial, raster and terrain analysis.						
• 10	get exposed to spatial modeling and estimation.						
UNIT-I	INTRODUCTION TO GIS				9		
Introductio	n – GIS Components – GIS in Organizations – Data Models : Introduction -	- Cor	nmc	on Sp	oatial		
Data Mode	ls – Raster Data Models – Other Data Models – Data File and Structures - G	eode	esy –	- Dat	ums.		
UNIT-II	DESIGNING GIS DATABASE WITH DIGITAL DATA				9		
Projections	and Coordinate Systems – Building GIS Database – Digitizing Coo	rdina	te c	aptu	re –		
Coordinate	e Transformation – Output : Maps – Data – Meta Data - Digital Data: Intr	oduc	tion	– G	lobal		
Digital Dat	a – Attribute Data and Tables.						
					•		
UNIT-III Clahal Cat	GEOSPATIAL NAVIGATION SYSTEM AND DATA MODEL		~ ~ ^	ممرم	9		
Global Sat	ellite Navigation System : Introduction – Differential Correction – Optical and	Lase	er C	oora	nate		
Surveying Sotollito Im	- GNSS Applications - Aenal and Satellite Images . Basic Philoples -	- Aei	iai i	mag	es –		
Salenne m	lages – All both Liban.						
UNIT-IV	SPATIAL AND RASTER ANALYSIS				9		
Introductio	n – Selection and Classification – Dissolve – Proximity Functions and Buf	fering) – (Over	lay –		
Map Algeb	ra – Local Functions – Neighborhood, Zonal and Global Functions – Terra	in An	alys	sis.	•		
			•				
UNIT-V	SPATIAL MODELING AND ESTIMATION				9		
Sampling	 Spatial Interpolation Methods –Spatial Prediction –Core Area Mapped 	bing-	Car	togra	aphic		
Modeling- Saptio-Temporal Models-Data Standards and Data Quality - GNSS - Datum							
Modernization–Improved Remote Sensing–Cloud Based GIS–Open GIS.							
			45.5				
COURSE		IAL:	45 F	'ERI	obs		
	DUICOMES						
At end of the course, learners will be able to							
COT: Use the fundamental concepts of Geographic mormation Science and Technology.							
CO2: Design Geo Spatial Database.							
CO3: Describe the geospatial system and represents various data model.							
CO4: Analyze Geospatial data using spatial and raster analysis techniques.							
CO5: Create and design principles, including thematic map display, map projections, and cartographic							
Design.							
B.Tech	n.Al & DS BoS Chairman R-2021(CHOICE BASED CH	REDIT	SYST	TEM)			

- 1. Paul Bolstad, "GIS Fundamentals: A First Text on Geographic Information Systems", XanEdu Publishing Inc , 6th edition, 2019.
- 2. Robert Haining, "Spatial Data Analysis Theory and Practice", Cambridge University, 1st Edition, 2010.
- 3. O'Sullivan, D and Unwin, D.J.," Geographic Information Analysis", Wiley, 2nd edition, 2010.

- 1. Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2nd Edition, 2016
- **2.** Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 3. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

21PAD32	TIME SERIES ANALYSIS AND FORECASTING	L	Т	Ρ	С
		3	0	0	3
COURSE	OBJECTIVES:				
The main o	objectives of this course are:				
• To	understand the graphical and numerical description of time series data.				
• To	apply regression models to general time series data.				
• To	use exponential smoothing methods to forecast future values.				
• To	apply ARIMA models to model stationary time series data.				
• To	be familiar with multivariate time series models and forecasting.				
UNIT-I	STATISTICS BACKGROUND FOR FORECASTING				9
Introductio	n- Graphical Displays- Numerical Description of Time Series D	ata	(sta	ation	arity,
autocovari	ance, autocorrelation)- Use of Data Transformations and Adjustments- Ge	neral	Ap	oroa	ch to
Time Serie	s Modeling and Forecasting-Evaluation and Monitoring Forecasting Model	Perf	orm	ance	÷.
UNIT-II	REGRESSION ANALYSIS AND FORECASTING				9
Introductio	n-Least Squares Estimation in Linear Regression- Statistical Inference In L	inear	Re	gres	sion-
Prediction	of New Observations- Variable Selection Methods in Regression- Generali	zed a	nd \	Neig	hted
Least Squa	ares- Regression Models for General Time Series Data.				
	EXPONENTIAL OMOOTUINO METUODO				•
UNIT-III	EXPONENTIAL SMOUTHING METHODS	rdor	Ev	nonc	9 ntiol
Smoothing	Higher-Order Exponential Smoothing- Forecasting	luei	ΕX	pone	filla
Ontoothing	righer erder Experiential enfourning Torecasting.				
UNIT-IV	AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MOD	ELS			9
Introduction- Linear Models for Stationary Time Series- Finite Order Moving Average Processes- Fin				inite	
Order Aut	pregressive Processes- Mixed Autoregressive – Moving Average (ARM	/IA)-N	lons	statio	nary
Processes	- Time Series Model Building.				
					0
Multivariat	Time Series Models and Ecrecasting, State Space Models, Combining For	0026	te to	Imn	J
Prediction	Performance- Neural Networks and Forecasting	ecas	15 10	mp	1000
Treaterion	r chomanee neural networks and r orecasting.				
TOTAL:45 PERIODS					
COURSE	OUTCOMES				
At end of the course, learners will be able to					
CO1: Evaluate and monitor forecasting model performance using appropriate metrics.					
CO2: Understand and apply least squares estimation to fit linear regression models.					
CO3: Interpret and evaluate the performance of exponential smoothing models.					
CO4: Fit ARIMA models using maximum likelihood estimation.					
CO5: Com	bine forecasts from different methods to improve predictive accuracy.				

- 1. Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulachi, "Introduction to Time Series Analysis and Forecasting",2nd Edition,Wiley,2015.
- 2. George E. P. Box , Gwilym M. Jenkins , Gregory C. Reinsel , Greta M. Ljung, "Time Series Analysis: Forecasting and Control", 5th Edition, Wiley, 2015.

- Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci, James R. Broyles, Christopher J. Rigdon, Rachel T. Johnson, "Student Solutions Manual to Accompany Introduction to Time Series Analysis and Forecasting", 1st Edition, Wiley,2009.
- 2. Rob Hyndman, George Athanasopoulos, "Forecasting: principles and practice", 1st Edition, Kindle Edition, 2018.
- 3. Galit Shmueli, Kenneth C. Lichtendahl Jr, "Practical Time Series Forecasting with R: A Hands-On Guide", 2nd Edition, Kindle Edition, 2016.

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE VERTICAL - IV

		_				
21PAD33	ROBOTIC PROCESS AUTOMATION	L	Т	Ρ	С	
		3	0	0	3	
COURSE	DBJECTIVES:					
The main c	bjectives of this course are:					
• To	understand the basic concepts of Robotic Process Automation.					
• To	expose to the key RPA design and development strategies and methodologie	es.				
• To	earn the fundamental RPA logic and structure.					
• To	explore the Exception Handling, Debugging and Logging operations in RPA.					
• To	earn to deploy and maintain the software bot.					
	INTRODUCTION TO ROBOTIC PROCESS AUTOMATION				9	
Emergence	of Robotic Process Automation (RPA) Evolution of RPA Differentiating RPA	fror	n Ai	itom	ation	
- Benefits	of RPA - Application areas of RPA Components of RPA RPA Platforms	Roł	otic	Pro	CASS	
Automation	Tools - Templates User Interface Domains in Activities Workflow Files	1.00	0010	110	0000	
7 (010)1101101						
UNIT-II	AUTOMATION PROCESS ACTIVITIES				9	
Sequence.	Flowchart & Control Flow: Sequencing the Workflow. Activities. Flowchart	Co	ntrol	Flov	v for	
Decision	making. Data Manipulation: Variables. Collection. Arguments. Data	Tabl	e. (Clipb	oard	
manageme	ent. File operations Controls: Finding the control, waiting for a control.	Act of	on a		ntrol.	
UiExplorer.	Handling Events.					
UNIT-III	APP INTEGRATION, RECORDING AND SCRAPING				9	
App Integr	ation, Recording, Scraping, Selector, Workflow Activities. Recording mou	se a	ind	keyb	oard	
actions to p	perform operation, Scraping data from website and writing to CSV. Process M	lining	j .			
UNIT-IV	EXCEPTION HANDLING AND CODE MANAGEMENT				9	
Exception I	nandling, Common exceptions, Logging- Debugging techniques, Collecting c	rash	dum	nps, I	Error	
reporting.	Code management and maintenance: Project organization, Nesting workf	lows	, Re	eusal	oility,	
Templates,	Commenting techniques, State Machine.					
UNIT-V	DEPLOYMENT AND MAINTENANCE				9	
Publishing	using publish utility, Orchestration Server, Control bots, Orchestration Serv	er to	dep	oloy	bots,	
License management, Publishing and managing updates. RPA Vendors - Open Source RPA, Future of						
RPA.						
	TO	TAL:	45 F	PERI	ODS	
COURSE	DUTCOMES					
At end of the course, learners will be able to						
CO1: Enunciate the key distinctions between RPA and existing automation techniques and platforms.						
CO3: Implement recording, web scraping and process mining by automation						
CO4: Use UiPath Studio to detect, and handle exceptions in automation processes						
CO5: Imple	ement and use Orchestrator for creation, monitoring, scheduling, and controlli	ng o	f aut	oma	ted	
bots	and processes.	55			-	

- 1. Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool UiPath by Alok Mani Tripathi, Packt Publishing, 2018.
- 2. Tom Taulli, The Robotic Process Automation Handbook: A Guide to Implementing RPA Systems, Apress publications, 2020.
- 3. A Gerardus Blokdyk, "Robotic Process Automation Rpa A Complete Guide ", 2020.

- 1. Frank Casale, Rebecca Dilla, Heidi Jaynes, Lauren Livingston, "Introduction to Robotic Process Automation: a Primer", Institute of Robotic Process Automation, Amazon Asia-Pacific Holdings Private Limited, 2018.
- Richard Murdoch, "Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant", Amazon Asia-Pacific Holdings Private Limited, 2018.

21PAD34			т	D	C	
211 AU94		L 3	1 0	Г 0	3	
COURSE		3	U	U	5	
The main o	biectives of this course are:					
	inderstand the fundamental concents of reinforcement learning					
• To l	earn the principles of Monte Carle prediction					
• 101	earn the philippies of Monte Carlo prediction.	معرما				
• 100	define R-Learning framework and its application in reinforcement learning pro	neid	IS.			
• 10 0	explore linear methods for function approximation in reinforcement learning.					
• 101	utilize heuristic search algorithms in reinforcement learning.					
UNIT-I	INTRODUCTION				9	
Introduction	n - Elements of RL, History of RL- Evaluative feedback -Goals and rewa	ards	– R	etur	ns –	
Markovian	Decision Problem (MDP) – Value functions - Optimality Criterion in MDPs.	Polic	y Ev	alua	tion-	
Policy Impr	ovement- Value Iteration, asynchronous DP- Efficiency of DP.	•	•			
UNIT-II	MONTE CARLO METHODS				9	
Monte Carl	o Prediction - Monte Carlo Estimation of Action Values - Monte Carlo Control-	Poli	cy E	valua	ation	
- Policy Imp	provement - On-policy and off - policy Monte Carlo controls -Incremental impl	emer	ntati	on.		
UNIT-III	LEARNING				9	
Temporal-	Difference prediction - Optimality of TD – Sarsa – Q Learning – Off-Polic	y TD	Co	ntrol	- R	
Learning -A	ActorCritic Model- Unifying Monte Carlo and TD – Traces - Games.					
UNIT-IV	FUNCTION				9	
Approximation - Value prediction and control – Gradient Descent methods - Linear methods – Control with						
Function A	oproximation - Artificial Neural Network based approximation.					
UNIT-V	PLANNING AND LEARNING				9	
Model base	ed learning and planning - Integrating Planning, Acting, and Learning - prio	ritize	d sv	veep	ing -	
Trajectory Sampling - Monte Carlo Tree Search - Heuristic search - Case Studies.						
	TO	۲ AL :	45 P	ERI	ODS	
COURSEC	DUTCOMES					
At end of th	ne course, learners will be able to					
CO1: Imple	ement and apply policy iteration and value iteration reinforcement learning alg	jorith	ms.			
CO2: Implement and apply Monte Carlo reinforcement learning algorithms.						
CO3. Implement and apply temporal-difference reinforcement learning algorithms with function approximation						
CO5 : Implementation and testing of complete decision making systems						
TEXT BOC	NKS:					
1.	Sutton R. S. and Barto A. G., "Reinforcement Learning: An Introduction",	2 nd	Edit	ion	MIT	
	Press,2018.					
2.	Reinforcement Learning', Richard.S.Sutton and Andrew G.Barto, 2 nd edition,	MIT	Pre	ss, 2	018.	
3.	CsabaSzepesvári, "Algorithms for Reinforcement Learning", 2 nd Edition, Mo	orgar	n & (Clay	bool,	
	2013.	-				

- 1. Belousov, B., Abdulsamad, H., Klink, P., Parisi, S., Peters, J. (Eds.), "Reinforcement Learning Algorithms: Analysis and Applications",1st Edition, Springer 2021.
- 2. Kevin Murphy, "Machine Learning A Probabilistic Perspective", 1st Edition, MIT press, 2012.
- 3. Christopher Bishop, "Pattern Recognition and Machine Learning", 1st Edition, Springer, 2006.

21PAD35	FOUNDATIONS OF GAME DESIGN AND DEVELOPMENT	L	Т	Р	С	
		3	0	0	3	
COURSE (DBJECTIVES:	<u> </u>				
The main c	bjectives of this course are:					
• To I	know the basics of 2D and 3D graphics for game development.					
• To l	know the stages of game development.					
• To	understand the basics of a game engine.					
• To :	survey the gaming development environment and tool kits.					
• To l	earn and develop simple games using Pygame environment.					
UNIT-I	3D GRAPHICS FOR GAME DESIGN				9	
Genres of	Games, Basics of 2D and 3D Graphics for Game Avatar, Game Compone	ents -	- 20) and	1 3D	
Transforma	tions – Projections – Color Models – Illumination and Shader Models – Ani	natio	n –(Contr	oller	
Based Anir	nation.					
UNIT-II Character	GAME DESIGN PRINCIPLES	+ Nor	rotio	<u> </u>	9	
Character	Development, Storyboard Development for Gaming – Script Design – Scrip	(Nar	ratic n D	n, G roduk	ame	
and Post -	Production	ucio	п, г	ouu	JUON	
anu i 03t –						
UNIT-III	GAME ENGINE DESIGN				9	
Rendering	Concept – Software Rendering – Hardware Rendering – Spatial Sorting Algor	ithms	s –A	Igorit	hms	
for Game E	ingine– Collision Detection – Game Logic – Game AI – Pathfinding.			0		
UNIT-IV	OVERVIEW OF GAMING PLATFORMS AND FRAMEWORKS				9	
Pygame Game development – Unity – Unity Scripts –Mobile Gaming, Game Studio, Unity Single player						
and Multi-F	layer games.					
					0	
	2D and 3D interactive games using Pygame Avatar Creation 2D	and	<u> </u>	Gran	9 bics	
Programmi	20 and 30 interactive games using Fygame – Avatal Creation – 20 ng – Incorporating music and sound – Asset Creations – Game P	anu hvsic	ງບ ເຊ	Grap Igorit	hme	
Development – Device Handling in Pygame – Overview of Isometric and Tile Rased arcade Games						
Puzzle Games						
	TO	TAL:	45 F	ERIC	ODS	
COURSE (DUTCOMES					
At end of th	e course, learners will be able to					
CO1: Explain the concepts of 2D and 3d Graphics.						
CO2: Design game design documents.						
CO3: Implementation of gaming engines.						
CO4: Survey gaming environments and frameworks.						
TEXT BOC	KS:					
1. Sar	jay Madhav, "Game Programming Algorithms and Techniques: A Platform Ag	jnost	ic Al	oproa	ıch",	
I [™] Edition, Addison Wesley, 2013.						
2. Will	McGugan, "Beginning Game Development with Python and Pygame:	⊢ror	ηN	IOVIC	e to	
Pro	ressionar", 1 st Edition, Apress, 2007.					
3. Paul Craven, "Python Arcade games", 1st Edition, Apress Publishers, 2016.

- 1. David H. Eberly, "3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics", 2nd Edition, CRC Press, 2006.
- 2. Jung Hyun Han, "3D Graphics for Game Programming", 1st Edition, Chapman and Hall/CRC, 2011.
- 3. Jason Gregory ,"Game Engine Architecture" 3rd Edition, A K Peters, 2019.

21PAD36	HUMAN COMPUTER INTERACTION	L	T	Р	C	
		3	0	0	3	
	DBJECTIVES:					
The main o	bjectives of this course are:					
• Tol	 To learn the foundations of Human Computer Interaction. 					
• Tok	become familiar with the design technologies for individuals and persons with	disa	ıbiliti	les.		
• Τοι	Inderstand the different models of HCI.					
• Tob	be aware of mobile HCI.					
• To l	earn the guidelines for user interface.					
UNIT-I	FOUNDATIONS OF HCI				9	
The Humar	: I/O channels – Memory – Reasoning and problem solving; The Computer: I	Devic	;es -	- Mer	nory	
– processii	ng and networks; Interaction: Models – frameworks – Ergonomics – styl	les -	- ele	emer	its –	
interactivitv	- Paradiams.					
UNIT-II	DESIGN & SOFTWARE PROCESS				9	
Interactive	Design: Basics – process – scenarios – navigation – screen design – Iteratio	n and	d pro	ototy	bing.	
HCI in soft	ware process: Software life cycle – usability engineering – Prototyping in	prac	tice	– de	sign	
rationale. D	esign rules: principles, standards, guidelines, rules.	•			0	
	5 1 1 7 7 5 7					
UNIT-III	MODELS AND THEORIES				9	
HCI Mode	ls: Cognitive models: Socio-Organizational issues and stakeholder	req	uire	ment	s –	
Communica	ation and collaboration models-Hypertext, Multimedia and WWW.	-				
UNIT-IV	MOBILE HCI				9	
Mobile Ec	osystem: Platforms, Application frameworks- Types of Mobile Applic	atior	าร:	Widg	gets,	
Application	s, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: El	emer	nts (of M	bile	
Design, To	ols.					
U <i>i</i>						
UNIT-V	WEB INTERFACE DESIGN				9	
Designing \	Web Interfaces – Drag & Drop Direct Selection Contextual Tools Overlays	Inlay	/s ar	nd Vi	rtual	
Pages Pro	cess Flow	may	o ai		ruai	
1 agoo, 1 to						
	TO	ΓAL:	45 F	PERI	ODS	
COURSE C	DUTCOMES					
At end of th	e course. learners will be able to					
CO1: Desid	in effective dialog for HCI.					
CO2: Demo	onstrate the software process and design rules.					
CO3: Design effective HCI for individuals and persons with disabilities.						
CO4: Identify the importance of user feedback.						
CO5: Expla	in the HCI implications for designing multimedia/ ecommerce/ e-learning We	bsite	s.			
IEXI BUU	NJ: 1 Alen Div, Jonet Finley, Oregon, Abaud, Durgell, Deste, "Utimes, O		4 a		" Ord	
	T. Alah Dix, Janet Finlay, Gregory Abowu, Russell Beale, Human Comput	er m	rela(Juon	, J	
	Edition, Pearson Education, 2004		~~	~ ~		
	Brian Fling, "Mobile Design and Development", 1st Edition, O'Reilly Media	ι Inc.	, 20	09.		

3. Bill Scott and Theresa Neil, "Designing Web Interfaces", 1st Edition, O'Reilly, 2009

- 1. Julie A. Jacko and Andrew Sears, The human-computer interaction handbook: fundamentals, evolving Technologies, and emerging applications, Lawrence Erlbaum Associates, 1st Edition, Inc., Publishers, 2003.
- 2. Lloyd P. Rieber, Computers, Graphics, & Learning, 1st Edition, Brown & Benchmark publishers, 2005.
- **3.** Yvonne Rogers, Helen Sharp, Jenny Preece, Interaction Design: beyond human-computer interaction, 2nd Edition, John-Wiley and Sons Inc., 2009.

21PAD37	GPU ARCHITECTURE AND PROGRAMMING	L	Т	Ρ	С	
		3	0	0	3	
	DBJECTIVES:					
The main c	bjectives of this course are:					
• 10	understand the basics of GPU architectures.					
• To	write programs for massively parallel processors.					
• To	understand the issues in mapping algorithms for GPUs.					
• To i	ntroduce different GPU programming models.					
• To :	study different algorithms for GPUs.					
UNIT-I	GPU ARCHITECTURE				9	
Evolution c	f GPU architectures - Understanding Parallelism with GPU –Typical GPU Ar	chite	ectur	e -C	UDA	
Hardware (Overview - Threads, Blocks, Grids, Warps, Scheduling.	onne	orun		02/1	
UNIT-II	CUDA PROGRAMMING				9	
Using CUD	A - Multi GPU - Multi GPU Solutions - Optimizing CUDA Applications: Proble	m De	econ	npos	ition,	
Memory Co	onsiderations, Transfers, Thread Usage, Resource Contentions.					
UNIT-III	PROGRAMMING ISSUES				9	
Common F	Problems: CUDA Error Handling, Parallel Programming Issues, Synchroniz	atior	ı, Al	gorit	hmic	
Issues, Fin	ding and Avoiding Errors.					
UNIT-IV	OPENCL BASICS				9	
OpenCL St	andard – Kernels – Host Device Interaction – Execution Environment – Mem	ory N	/lode	əl — E	3asic	
OpenCL Ex	kamples.					
UNIT-V	ALGORITHMS ON GPU				9	
Parallel Pa	atterns: Convolution, Prefix Sum, Sparse Matrix - Matrix Multiplication	_ !	Prog	Jram	ming	
Heterogen	eous Cluster.					
	TO	ſAL:	45 F	'ERI	ODS	
COURSE	DUTCOMES					
At end of th	ne course, learners will be able to					
CO1: Desc	ribe GPU Architecture.					
CO2: Write	programs using CUDA, identify issues and debug them.					
CO3: Imple	ement efficient algorithms in GPUs for common application kernels, such as ma	atrix i	mult	plica	ation.	
CO5: Ident	ify efficient parallel programming patterns to solve problems					
TEXT BOC	DKS:					
1. Sha	ne Cook, CUDA Programming: A Developer's Guide to Parallel Comp	uting) wi	th G	PUs	
(Ap	plications of GPU Computing), 1 st Edition, Morgan Kaufmann, 2012.					
2. Dav Ope	rid R. Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, "Heterogeneou enCL", 3 rd Edition, Morgan Kauffman. 2015.	is co	mpi	uting	with	
3. Nich	3 Nicholas Wilt CUDA Handbook: A Comprehensive Guide to GPU Programming, 1st Edition					

- 1. Jason Sanders, Edward Kandrot, CUDA by Example: An Introduction to General Purpose GPU Programming, 1st Edition, Addison Wesley, 2010.
- 2. David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors A Hands-on Approach, 3rd Edition, Morgan Kaufmann, 2016.

21PAD38	WEB AND SOCIAL MEDIA ANALYTICS	L	Т	Ρ	С	
		3	0	0	3	
COURSE C	DBJECTIVES:	I				
The main o	bjectives of this course are:					
• Τοι	understand the basic issues and types of web and social media mining.					
• To f	amiliarize the learners with the concept of web and social media analytics an	d une	ders	tand	its	
sign	ificance.					
 To familiarize the learners with the tools of web and social media analytics. 						
• To E	Enable the learners to develop skills required for analyzing the effectiveness of	of we	b ar	nd so	ocial	
med	lia for business purposes.					
• To k	know the applications in real time systems.					
UNIT-I	INTRODUCTION TO SOCIAL MEDIA ANALYSIS				9	
Social med	lia landscape, Need for SMA; SMA in Small organizations; SMA in lar	je o	rgar	nizat	ions,	
Application	of SMA in different areas. Network fundamentals and models: The social network	vork	s pe	rspe	ctive	
- nodes, tie	s and influencers, Social network and web data and methods.					
UNIT-II	COMMUNITY BUILDING AND MANAGEMENT				9	
History and	Evolution of Social Media-Understanding Science of Social Media –Goals	s for	usir	ng S	ocial	
Media- Soc	ial Media Audience and Influencers - Digital PR- Promoting Social Media Pag	es- L	.inki	ng S	ocial	
Media Acco	ounts.					
UNIT-III	SOCIAL MEDIA POLICIES AND MEASUREMENTS				9	
Social Med	ia Policies-Etiquette, Privacy- ethical problems posed by emerging social me	dia te	echr	nolog	jies -	
The Basics	of Tracking Social Media.					
UNIT-IV	WEB ANALYTICS				9	
Data Colle	ction, Overview of Qualitative Analysis, Business Analysis, KPI and I	Planr	ning	, Cr	itical	
Component	ts of a Successful Web Analytics Strategy, Proposals & Reports, Web Data A	naly	sis.			
UNIT-V	SOCIAL MEDIA ANALYTICS				9	
Introduction	n, parameters, demographics. Analyzing page audience. Reach and Enga	gem	ent	anal	ysis.	
Post- perfo	rmance on FB. Social campaigns. Measuring and Analyzing social campaig	าs, d	efini	ing g	joals	
and evaluat	ting outcomes, Network Analysis.					
	TOT	'AL:4	45 P	PERI	ODS	
COURSE C	DUTCOMES					
At end of th	e course, learners will be able to					
CO1: Unde	rstand about web, social media mining.					
CO2: Unde	rstand the significance of web and social media analytics.					
CO3: Lean	I tools of web and social media analytics.	husi	nes	ç		
purpo	DSes.	2001		-		
CO5: Know	the applications in real time systems.					
TEXT BOO						
	1 Matthow Canle Avinach Kohirkar Social Modia Analytice: Techniques	200	i Inc	naht	c tor	

1. Matthew Ganis, Avinash Kohirkar, Social Media Analytics: Techniques and Insights for Extracting Business Value Out of Social Media, Pearson, 2016.

- 2. K. M. Shrivastava, Social Media in Business and Governance, Sterling Publishers Private Limited, 2013
- 3. Christian Fuchs, Social Media a critical introduction, SAGE Publications Ltd, 2014.

- 1. Bittu Kumar, Social Networking, V & S Publishers, 2013.
- 2. Avinash Kaushik, Web Analytics An Hour a Day, Wiley Publishing, 2007.

21PAD39	AI IN FINANCE	L	Т	Р	С
		3	0	0	3
COURSE (DBJECTIVES:				
The main c	bjectives of this course are:				
• To	explore the concepts of machine intelligence.				
• To	o understand the types of Finance, and Concepts of AI in Finance.				
• To	o discuss the neural networks and reinforcement learning.				
• To	b learn algorithmic trading and test it in python environment.				
• 10	o understand the role of AI in finance and its applications.				
UNIT-I	MACHINE INTELLIGENCE				9
Artificial In	telligence: Algorithms, Neural Networks— Importance of Data. Super Intelli	genc	e:	Forn	ns of
Intelligence	e – Paths to Super intelligence – Intelligence Explosion.				
UNIT-II	FINANCE AND MACHINE LEARNING				9
Normative	Finance: Uncertainty and Risk – Expected Utility Theory – Mean – Variance	Portf	olio	The	ory –
Capital Ass	set Pricing Model – Arbitrage Pricing Theory. Data-Driven Finance: Scientific M	1ethc	od –	Fina	ncial
Econometr	ics and Regression – Data Availability, Normative Theories Revisited – D	ebur	nking	g Ce	ntral
Assumption	ns. Machine Learning. Al– First Finance.				
UNIT-III	STATISTICAL INEFFICIENCIES				9
Dense Neu	ural Networks: Baseline prediction – Normalization – Dropout – Regulariza	tion	– B	aggi	ng –
Optimizers	.Recurrent Neural Networks: Second Example – Financial Price Series –	Fina	ancia	al Re	eturn
Series – F	inancial Features. Reinforcement Learning : Fundamental Notations - Ope	nAl (Gym	n - M	onte
Carlo Ager	nt – Neural Network Agent – DQL Agent – Simple Finance Gym - Better Fin	ance	e Gy	m –	FQL
Agent.					
UNIT-IV	ALGORITHMIC TRADING				9
Vectorized	Back testing: Back testing an SMA-Based Strategy – Back testing a Daily DN	N-Ba	sed	Stra	teav
- Back test	ting an Intraday DNN-Based Strategy. Risk Management: Trading Bot, Vecto	rized	Bad	ck te	sting
Event-Base	ed Back testing – Assessing Risk – Back testing Risk Measures. Execution	and	Dep	oloyn	nent:
Oando Acc	count – Data Retrieval – Order Execution – Trading Bot.				
UNII-V	OUILOOK	Troir	ina	Figh	9 t for
Resources	- Market Impact - Competitive Scenarios - Risks - Regulation and Ov	orsic	ing iht	Fina	ncial
Singularity	- Market impact - competitive Scenarios - Misks - Regulation and Ov	ersig	ji it.	ппа	nciai
Chigalanty.					
	TO	AL:	45 F	PERI	ODS
COURSE	DUTCOMES				
At end of the	ne course, learners will be able to				
CO1: Explo	pre the main concepts of AI and machine learning.				
	Inancial types, metrics and machine learning techniques in AI.				
CO3 : Apply CO4 : Fxpl	bre algorithmic trading that AI and machine learning techniques can add to va	rious	por	tfolic	and
risk manag	ement strategies.		P 01		
CO5: Apply	y the concepts of AI in financial applications.				

TEXT BOOKS:

- Yves Hilpisch, "Artificial Intelligence in Finance A Python-Based Guide", O'Reilly Media, Inc. 1st Edition, 2020.
- 2. Nydia Remolina, Aurelio Gurrea-Martinez, "Artificial Intelligence in Finance: Challenges, Opportunities and Regulatory Developments", Edward Elgar Publishing ,1st Edition, Ltd,2023.
- 3. Jeffrey Ng, "Hands-On Artificial Intelligence for Banking: A practical guide to building intelligent financial applications using machine learning techniques", Packt, 2020.

- Oliver Wyman, "Artificial Intelligence Applications in Financial Services", Marsh & McLennan, 1st Edition, 2019.
- 2. Ivana Bartoletti, Anne Leslie, Shân M. Millie ,"The Al Book: The Artificial Intelligence Handbook for Investors, Entrepreneurs and FinTech Visionaries", 1st Edition, Wiley,2020.

21PAD40	ARTIFICIAL NEURAL NETWORKS AND ITS APPLICATIONS	L	Т	Ρ	С		
		3	0	0	3		
COURSE O	DBJECTIVES:						
The main o	bjectives of this course are:						
• To e	explore the architecture and learning principles of Neural Networks.						
• To a	develop various hybrid algorithms involved in Neural Networks.						
 To provide adequate knowledge of application of Neural Networks in real time systems. 							
 To understand the architecture of Adaptive Resonance theory. 							
• To	define the Neocognitron and its process.						
UNIT-I	NEURAL NETWORKS ARCHITECTURES				9		
Neurophys	ology – General Processing Element – Perceptron representation – L	earni	ng	– Li	near		
separability	-Problems with the perceptron training algorithms - Multilayer perceptron	Lea	rning	g rul	es –		
Supervised	learning –ADALINE Architecture – LMS learning rule – Applications.						
UNIT-II	BACK PROPAGATION NETWORK AND SIMULATED ANNEALING				9		
Back Propa	gation Network – operation, generalized delta rule, Training algorithm – upda	ting	of or	utpul	and		
hidden lav	er weights – Practical difficulties and considerations – Application of BP	N –	Anr	nealir	ng —		
Boltzmann	machine – Learning – Application.				0		
UNIT-III	COUNTER PROPAGATION NETWORK AND SELF ORGANIZING MAP				9		
Counter Pr	opagation network concept – Architecture – Training – Practical consideration	n –	Арр	licati	ons-		
Self organia	zing map – learning algorithm, feature map classifier, Applications.						
UNIT-IV	ASSOCIATIVE MEMORY AND ADAPTIVE RESONANCE THEORY				9		
Associative	Memory concept - Bi-directional Associative Memory - Hopfield memory - ti	aveli	ng s	sales	man		
problem – /	Architecture of Adaptive Resonance Theory – Pattern matching in ART netwo	rk.					
UNIT-V	NEOCOGNITRON				9		
Architecture	e of Neocognitron- Data processing and performance of architecture of	spa	atio	temr	oral		
networks fo	r speech recognition.	I		·			
	ТОТ	AL:	45 P	PERI	ODS		
COURSE O	DUTCOMES						
At end of th	e course, learners will be able to						
CO1: Apply	the concept of neural networks in practical applications.						
CO2: Desig	n, implement and analyze the performance of Back Propagation Neural Netw	vork.					
CO3: Apply Counter Propagation Network and Self Organizing Map for solving various problems.							
CO4: Solve	e real world problems using Associative and Adaptive Neural Network Technic	ques	•				
CO5: Imple	ment Neocognitron architecture for practical applications.						
TEXT BOO	KS:						
1	J.A. Freeman and B.M.Skapura, "Neural Networks, Algorithms Applications a	and F	٥rog	Irami	ning		
Techniques", Addison–Wesely, 2003.							

2. Laurene V. Fausett "Fundamentals of Neural Networks: Architectures, Algorithms and Applications", Prentice Hall, 2013.

- 1. Jang J.S.R., Sun C.T and Mizutani E, "Neuro Fuzzy and Soft computing", Pearson education, Reprint 2010.
- 2. S.Rajasekaran and G.A.VijayalakshmiPai "Neural networks, Fuzzy logics, and Genetic algorithms", Prentice Hall of India, 2013.

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE VERTICAL- V

		<u> </u>		_	
21PAD41	VIDEO CREATION AND EDITING	L	Т	Ρ	С
		3	0	0	3
COURSE	DBJECTIVES:				
The main c	bjectives of this course are:				
• <u>To</u> i	ntroduce the broad perspective of linear and nonlinear editing concepts.				
• To	understand the concept of Storytelling styles.				
• <u>T</u> o I	be familiar with audio and video recording.				
• To a	apply different media tools.				
• To l	earn and understand the concepts of AVID XPRESS DV 4.				
UNIT-I	FUNDAMENTALS				9
Evolution o	f filmmaking - linear editing - non-linear digital video - Economy of Expression	- risł	ks as	ssoci	ated
with altering	g reality through editing.				
UNIT-II	STORYTELLING				9
Storytelling	styles in a digital world through jump cuts, L-cuts, match cuts, cutaways, dise	solve	s, sp	olit e	dits -
Consumer	and pro NLE systems - digitizing images - managing resolutions - mechanics	of di	igita	l edit	ing -
pointer files	s - media management.				
UNIT-III	USING AUDIO AND VIDEO				9
Capturing of	digital and analog video importing audio putting video on exporting digital video) to ta	ape i	recoi	ding
to CDs and					
UNIT-IV	WORKING WITH FINAL CUT PRO			_	9
Working wi	th clips and the Viewer - working with sequences, the Timeline, and the cany	as -	Bas	ic Ec	liting
- Adding ar	nd Editing Testing Effects - Advanced Editing and Training Techniques - Wo	rking) wit	h Au	dio -
Using Med	a Tools - Viewing and Setting Preferences.				
UNIT-V	WORKING WITH AVID XPRESS DV 4				9
Starting Pro	ojects and Working with Project Window - Using Basic Tools and Logging - Pr	epari	ing t	o Re	cord
and Record	ang - Importing Files - Organizing with Bins - Viewing and Making Footage - U	sing	Im	eline	and
	Trim Mode - Working with Audio - Output Options.		<u> </u>		000
		IAL:	43 F	CRI	003
	JUICOMES:				
At end of tr	te course, learners will be able to				
CO1: Com	ify the infrastructure and significance of storytolling.				
	v suitable methods for recording to CDs and V/CDs				
CO4: Addr	ess the core issues of advanced editing and training techniques				
CO5: Desid	and develop projects using AVID XPRESS DV 4				
TEXT BOC	oks:				
1. Avio	d Xpress DV 4 User Guide, 2007.				
2. Rot	pert M. Goodman and Partick McGarth, "Editing Digital Video: The Comp	lete	Crea	ative	and
Tec	hnical Guide", Digital Video and Audio, McGraw – Hill 2003.				
3. And	Irei Besedin, "Digital Video And Photo Editing Software With Adobe Pho	otosh	юр	Soft	ware
Cre	ating Cloud Classroom Book! : Classroom in a Book", Kindle Edition, 2021.		-		
REFEREN	CES:				
1. Fina	al Cut Pro 6 User Manual, 2004.				
2. Keit	th Underdahl, "Digital Video for Dummies", Third Edition, Dummy Series, 200	1.			

2104042			т	D	0
ZIFAD4Z	ESSENTIALS OF UI AND UX DESIGN	L	1	P	
		3	U	U	3
	JBJECTIVES:				
	bjectives of this course are.				
• 10 p	novide a sound knowledge in Or & OA.				
• IOU	Inderstand the need for UI and UX.				
• Iou	Inderstand the various Research Methods used in Design.				
• 10 6	explore the various Tools used in UI & UX.				
• Cre	ating a wireframe and prototype.				
UNIT-I	FOUNDATIONS OF DESIGN				9
UI vs. UX [Design - Core Stages of Design Thinking - Divergent and Convergent Thinki	ng -E	Brair	stor	ning
and Game	storming - Observational Empathy.				
UNIT-II	FOUNDATIONS OF UI DESIGN				9
Visual and	UI Principles - UI Elements and Patterns - Interaction Behaviors and Principles	ciples	5 –B	rand	ing -
Style Guide	9S.				
UNIT-III	FOUNDATIONS OF UX DESIGN				9
Introduction	to User Experience - Why You Should Care about User Experience - Ur	Iders	tanc	ling	User
Experience	- Defining the UX Design Process and its Methodology - Research in User E	Exper	ienc	e De	sign
- Tools and	Method used for Research - User Needs and its Goals - Know about Busine	ess G	oals	i.	
UNIT-IV	WIREFRAMING, PROTOTYPING AND TESTING				9
Sketching F	Principles - Sketching Red Routes - Responsive Design – Wireframing - Crea	ating	Wire	flow	s -
Building a F	Prototype - Building High-Fidelity Mockups - Designing Efficiently with Tools-	Inter	actio	on	
Patterns - 0	Conducting Usability Tests - Other Evaluative User Research Methods - Synt	hesiz	ing	Test	
Findings - F	Prototype Iteration.				
UNIT-V	RESEARCH, DESIGNING, IDEATING, & INFORMATION ARCHITECTUR	E			9
Identifying	and Writing Problem Statements - Identifying Appropriate Research Me	thods	s –	Crea	ating
Personas -	Solution Ideation - Creating User Stories - Creating Scenarios - Flow Diagran	ns - F	low	Мар	ping
- Informatio	n Architecture.				
	TO	۲AL:	45 F	PERI	ODS
COURSE O	DUTCOMES:				
At end of th	e course, learners will be able to				
CO1: Build	I UI for user Applications.				
CO2: Evalu	ate UX design of any product or application.				
CO3: Demo	onstrate UX Skills in product development.				
CO4: Imple	e Wireframe and Prototype				
TEXT BOO					
	March "LIX for Beginners" ()'Poilly 2022				
1. JOE 2. Jon	Vablanski, "Laws of LIX using Psychology to Design Batter Product & Servic	~~" (סיר	illy 2	021
2. JOH	fabioliski, Laws of OA using Esychology to Design Better Floduct & Servic			iliy ∠ ⊪v ⊃c	021.
		n, o	Rei	iy zu	20.
REFEREN					
1. Stev	/e Schoger, Adam Wathan "Refactoring UI", 2018.		_		rd
2. Stev	ve Krug, "Don't Make Me Think, Revisited: A Commonsense Approach to We	:b &N	lobi	le", 3	ia
Edit	ion, 2015.				
3. http	s://www.nngroup.com/articles/				

21PAD43	DIGITAL MARKETING	L	Т	Ρ	С
		3	0	0	3
COURSE C	DBJECTIVES:				
The main o	bjectives of this course are:				
 Τοι 	understand the process of online market.				
 To acquire the knowledge on search engine optimization. 					
• To Explore the role and importance of digital marketing in today's rapidly changing busines					
env	ironment.	0	Ũ		
• To I	earn about social media marketing.				
• To f	ocuses on how digital transformation can be utilized by organizations and how	<i>v</i> its	effe	ctive	ness
can	be measured.		ene	00	
UNIT-I	INTRODUCTION TO ONLINE MARKET				9
Online Mar	ket space- Digital Marketing Strategy- Components - Opportunities for buildir	na B'	ranc	We	bsite
- Planning a	and Creation - Content Marketing.	.9 -			
UNIT-II	SEARCH ENGINE OPTIMISATION				9
Search En	gine optimisation - Keyword Strategy- SEO Strategy - SEO success f	iacto	rs -	On-F	Page
Techniques	sine optimization regional enalogy dee enalogy dee enalogy	ine	wor	ks-	SEM
component	s- PPC advertising -Display Advertisement	inc	**011		
	F-MAIL MARKETING				9
E- Mail Mai	rketing - Types of F- Mail Marketing - Email Automation - Lead Generation -	Inte	arat	ina F	- mail
with Social	Media and Mobile- Measuring and maximizing email campaign effectiveness	Mobi	ile N	larke	tina-
Mobile Inve	entory/channels- Location based: Context based: Coupons and offers Mol	hile	Ann	s M	ohile
	SMS Campaigns-Profiling and targeting	5110 7	ηρ _ι	5, 101	ODIIC
					Q
Social Mod	ia Marketing - Social Media Channels- Loveraging Social media for brand o		area	tions	and
	a Marketing - Social Media Charmels- Leveraging Social media for brand c	uildi	-13a 0a (Cuet	omor
rolationshin	sessial / Denominate Social media campaigns. Engagement Marketing- D	unun	ig (Jusi	JIIICI
					0
	DIGITAL TRANSFORMATION		Mo	dia	9 Woh
	Changing your strategy based on analysis. Recent trands in Digital marketing	Julai	INIE	ula,	vven
Analytics -		j. CAL .	150		000
		AL.	4 9	CRI	003
	JUICOMES				
	le course, learners will be able to	sidly	aha	nain	~
COI: TO EX	ness environment	July	cnai	nging	J
CO2: To fo	cuses on how digital marketing can be utilized by organizations and how its e	effect	iver	less	can
be m	neasured.				oun
CO3: To kr	now the key elements of a digital marketing strategy.				
CO4: To st	udy how the effectiveness of a digital marketing campaign can be measured.				
CO5: To de	emonstrate advanced practical skills in common digital marketing tools such a	is SE	ΞΟ, Ι	SEM	Ι,
	al media and Blogs.				
	INJ. Duppot Singh Dhotia "Eurodomontola of Digital Markating" (St. adition. Decrea	~ ㄷ~		ion C	0017
1.	runeel Singh Dhalla, runuamentals of Digital Marketing, 1° edition, Pearsor	i Eal	ucat	1011,2	.017.
2.	vanuana Anuja, Digitai Marketing Oxford University Press,2015.		ak (- 14
3.	Barker, Barker, Bormann and Nener, Social Media Marketing: A Strategic App	JIOad	;n, 2	:E 50	Jutn-
	western, Gengage Learning, 2017.				

- 1. Philip Kotler, "Marketing 4.0: Moving from Traditional to Digital" Wiley, 1st edition, 2017.
- 2. Ryan, D., "Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, Kogan Page Limited, 2014.
- 3. Pulizzi, J Beginner's Guide to Digital Marketing , Mcgraw Hill Education, 2019.

21PAD44	VISUAL EFFECTS	L	Т	Р	С
		3	0	0	3
COURSE	DBJECTIVES:			-	-
The main c	bjectives of this course are:				
• To	get a basic idea on animation principles and techniques.				
• To	get exposure to CGI, color and light elements of VFX.				
• To	nave a better understanding of basic special effects techniques.				
• To	have a knowledge of state of the art vfx techniques.				
• To	pecome familiar with popular compositing techniques.				
UNIT-I	ANIMATION BASICS				9
VFX produ	ction pipeline, Principles of animation, Techniques: Keyframe, kinematics, Full	anim	natio	n, lin	nited
animation,	Rotoscoping, stop motion, object animation, pixilation, rigging, shape keys, m	notior	ו pa	ths.	
UNIT-II	CGI, COLOR, LIGHT				9
CGI – virtu	al worlds, Photorealism, physical realism, function realism, 3D Modeling and	Renc	lerin	ig: co	olor -
Color spac	es, color depth, Color grading, color effects, HDRI, Light – Area and mesh liq	jhts,	ima	ge b	ased
lights, PBR	lights, photometric light, BRDF shading model.				
UNIT-III	SPECIAL EFFECTS				9
Special Eff	ects – props, scaled models, animatronics, pyrotechniques, Schüfftan proces	ss, Pa	artic	le ef	fects
– wind, rair	n, fog, fire.				
UNIT-IV	VISUAL EFFECTS TECHNIQUES				9
Motion Cap	oture, Matt Painting, Rigging, Front Projection.Rotoscoping, Match Moving -	Trac	king	, car	nera
reconstruct	ion, planar tracking, Calibration, Point Cloud Projection, Ground plane determ	inati	on, S	3D N	atch
Moving.					
UNIT-V	COMPOSITING				9
Compositin	g - chroma key, blue screen/green screen, background projection, alpha c	:omp	ositi	ng, d	deep
image com	positing, multiple exposure, matting, VFX tools - Blender, Natron, GIMP.				
	TOT	۲AL:	45 P	PERI	ODS
COURSE	DUTCOMES				
At end of th	ne course, learners will be able to				
CO1: To in	plement animation in 2D / 3D following the principles and techniques.				
CO2: Io us	se CGI, color and light elements in VFX applications.				
	eate special effects using any of the state of the art tools.				
CO4: 10 a	pply popular visual effects techniques using advanced tools.				
	se compositing tools for creating viry for a variety of applications.				
TEXT BOC	NKS:				
1.	Chris Roda, "Real Time Visual Effects for the Technical Artist", CRC Press, 1	st Ed	ition	i, 202	22.
2.	Steve Wright, "Digital Compositing for film and video, Routledge", 4th Edition,	2017	7.		
3.	John Gress, "Digital Visual Effects and Compositing", New Riders Press, 1 st I	Editic	on, 2	2014.	
DEEEE					
REFEREN					
1.	Jon Gress, "Digital Visual Effects and Compositing", New Riders Press, 1 st E	ditior	ı, 20 	14.	
2.	Robin Brinkman, "The Art and Science of Digital Compositing: Techniques	tor V	isua	l Eff	ects,
	Animation and Motion Graphics", Morgan Kauffman, 2008.				
3.	Luiz Velho, Bruno Madeira, "Introduction to Visual Effects A Computa	tiona	I Ap	oproa	ach",
	Routledge, 2023.				

- 4. Jasmine Katatikarn, Michael Tanzillo, "Lighting for Animation: The art of visual storytelling , Routledge, 1st Edition, 2016.
- 5. Eran Dinur, "The Complete guide to Photorealism, for Visual Effects, Visualization and Games", Routledge, 1st Edition, 2021.

21PAD45	APP DEVELOPMENT	L	Т	Р	С	
		3	0	0	3	
COURSE	OBJECTIVES:	<u> </u>	L			
The main	objectives of this course are:					
• To	understand the basics of web and mobile app development.					
• To	learn development of native applications with basic GUI Components.					
• To	develop cross-platform applications with event handling.					
• To	implement applications with location and data storage capabilities.					
• To	demonstrate web applications with database access.					
UNIT-I	FUNDAMENTALS OF MOBILE & WEB APPLICATION DEVELOPMENT				9	
Basics of	Web and Mobile application development, Native App, Hybrid App, Cross-plat	form	Арр	, Wr	at is	
Progressi	ve Web App, Responsive Web design.					
UNIT-II	NATIVE APP DEVELOPMENT USING JAVA				9	
Native W	b App, Benefits of Native App, Scenarios to create Native App, Tools for cre	ating	j Na	tive	App,	
Cons of N	lative App, Popular Native App Dev elopment Frameworks, Java & Kotlin fo	r And	droic	l, Sw	ift &	
Objective	C for iOS, Basics of React Native, Native Components, JSX, State, Props.					
UNIT-III			<u></u>		9	
Hybrid W	eb App, Benefits of Hybrid App, Criteria for creating Native App, Tools for creating Native App, Tools for creating the second s	ating	ј Ну	brid	Арр,	
		lova.				
UNIT-IV	CROSS-PLATFORM APP DEVELOPMENT USING REACT-NATIVE	lattar	···· ^	nn T		
for croatir	a Cross platform App, Cons of Cross platform App, Chiefla for Cross platform	Ann		pp, i oloni	nont	
Framewo	ks Flutter Xamarin React-Native Basics of React Native Native Compor	npp	20	x s	tate	
Props.		icinto	, 00	Λ, Ο	iaic,	
UNIT-V	NON-FUNCTIONAL CHARACTERISTICS OF APP FRAMEWORKS				9	
Comparis	on of different App frameworks, Build Performance, App Performance, Debu	gginç	j ca	pabil	ties,	
Time to M	arket, Maintainability, Ease of Development, UI/UX and Reusability.					
	TO [.]	FAL:	45 P	PERI	ODS	
COURSE	OUTCOMES:					
At end of	he course, learners will be able to					
CO1: Dev	elop Native applications with GUI Components.					
CO2: Enr	ance hybrid applications with basic event handling.					
CO4: Exh	bit cross platform applications with basic GUI and event handling.					
CO5: Dev	elop web applications with cloud database access.					
	046					
	wn Griffiths Head First Android Development O'Reilly 3 rd edition Novembe	or 20'	21			
1. Da	vmond K Camden "Apache Cordova in Action" Manning 2015	/1 202	- 1 .			
3. Ar	thony Accomazzo, Houssein Diirdeh, Sophia Shoemaker, Devin Abbott	"Full	Sta	ck R	eact	
Na	tive: Create beautiful mobile apps with JavaScript and React Native", FullStack	(pub	lishi	ng, 2	019.	
REFERE	ICES:					
1. Jo	nn Horton, "Android Programming for Beginners", Packt Publishing, 2 nd Editior	ו, 20 ⁻	18.			
2. Sł	aun Lewis, Mike Dunn, "Native Mobile Development", 2019.					
3. Pa	wan Lingras, Matt Triff, Rucha Lingras, "Building Cross-Platform Mobile a	nd V	lep	App	s for	
Engineers and Scientists: An Active Learning Approach" 2015.						

2404040			-	-	~
2124040	DEVOP5	L	1	۲	0
		3	U	U	3
	DJEUIIVED:				
	ujeutives of this course are.				
• 10 II 	nitiouuce DevOps terminology, deminition & concepts.				
• lou	To understand the different Version control tools like Git, Mercurial etc.				
• lot	Inderstand the concepts of Continuous Integration, Continuous Testing and C	Jonti	nuo	us	
Dep —	loyment.				
 To understand Configuration management using Ansible. 					
• Illus	trate the benefits and drive the adoption of cloud-based Devops tools to solv	e rea	l wc	orld	
prob	olems.				
UNIT-I	INTRODUCTION TO DEVOPS				9
Devops Es	sentials - Introduction to AWS, GCP, Azure - Version control systems: Git ar	nd Gi	thuk) - (Gerrit
Code reviev	ν.				
UNIT-II	COMPILE AND BUILD USING MAVEN , GRADLE & ANT				9
Introduction	, Installation of Maven, POM files, Maven Build lifecycle, Build phases(co	ompil	e bi	uild,	test,
package) M	aven Profiles, Maven repositories(local, central, global), Maven plugins, Mave	n cre	ate	and	build
Artificats, D	ependency management, Installation of Gradle, Understand build using Gra	dle -	- Int	rodu	ction
to ANT- Ins	tallation of ANT – Understand and Build using ANT.				
UNIT-III	CONTINUOUS INTEGRATION USING JENKINS				9
Install & Co	nfigure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job, Con	figur	ing a	a Jer	nkins
job, Introdu	ction to Plugins, Adding Plugins to Jenkins, Commonly used plugins (Git F	Plugi	n, P	aram	neter
Plugin, HTN	IL Publisher, Copy Artifact and Extended choice parameters). Configuring Je	nkins	s to v	work	with
java, Git an	d Maven, Creating a Jenkins Build and Jenkins workspace.				
UNIT-IV	CONFIGURATION MANAGEMENT USING ANSIBLE				9
Ansible Inti	oduction, Installation, Ansible master/slave configuration, YAML basics,	Ansil	ole	mod	ules,
Ansible Inve	entory files, Ansible playbooks, Ansible Roles, adhoc commands in ansible.				
UNIT-V	BUILDING DEVOPS PIPELINES USING AZURE				9
Create Gith	nub Account, Create Repository, Create Azure Organization, Create a new	v pip	elin	e, B	uilda
sample cod	e, Modify azure-pipelines.yaml file - Testing and Monitoring - Selenium, Jira,	and	ELk	ζ.	
	TOT	TAL:	45 P	PERI	ODS
COURSE C	OUTCOMES:				
At end of th	e course, learners will be able to				
CO1: Unde	rstand different actions performed through Version control tools like Git.				
CO2: Perfo	rm Continuous Integration and Continuous Testing and Continuous Deploym	ent u	using	g Jer	nkins
by bu	Iding and automating test cases using Maven & Gradle.				
CO3: Ability	/ to Perform Automated Continuous Deployment.				
CO4: Ability	/ to do configuration management using Ansible.				
CO5: Unde	rstand to leverage Cloud-based DevOps tools using Azure DevOps.				
	NO:				
	ento vomilitag, A Mactical Guide to Git and GitHub for Windows Users: Fro	III BE	ginr	ierto	
⊂xp	en in Easy Step-by-Step Exercises, 2 th Edition, Minute Edition, 2016.	omo	nd		
Z. Jaso Com	on carnion, Linux for beginners. An introduction to the Linux Operating System and Line." Kindle Edition 2014		UII		
COIL					

3. Mitesh Soni , Hands-On Azure Devops: Cicd Implementation For Mobile, Hybrid, And Web Applications Using Azure Devops And Microsoft Azure: CICD Implementation for DevOps and Microsoft Azure , Paperback ,2020 .

- 1. Jeff Geerling, "Ansible for DevOps: Server and configuration management for humans", 1st Edition, 2015.
- David Johnson, "Ansible for DevOps: Everything You Need to Know to Use Ansible for DevOps", 2nd Edition, 2016.
- 3. Mariot Tsitoara, "Ansible 6. Beginning Git and GitHub: A Comprehensive Guide to Version Control, Project Management, and Teamwork for the New Developer", 2nd Edition, 2019.
- 4. https://www.jenkins.io/user-handbook.pdf
- 5. https://maven.apache.org/guides/getting-started/

21PAD47	OPEN SOURCE TECHNOLOGIES	1	т	Р	C			
		3	0		3			
COURSE C	DBJECTIVES:	•	•	•	•			
The main objectives of this course are:								
• Und	erstand the difference between open-source software and commercial software	are.						
• Und	erstand the policies, licensing procedures and ethics of FOSS							
• Und	erstand open-source philosophy, methodology and ecosystem.							
 Awa 	preness with Open-Source Technologies							
 Kno 	wledge to start, manage open-source projects							
	modge to start, manage open source projecte.							
UNIT-I	INTRODUCTION				9			
Introductior	n to Open-Source: Open Source, Need and Principles of OSS, Open-S	ource	e St	anda	ards,			
Requireme	nts for Software, OSS success, Free Software, Examples, Licensing, Fre	e Vs	s. Pr	oprie	etary			
Software, F	ree Software Vs. Open-Source Software, Public Domain. History of free sof	tware	e, Pr	oprie	etary			
Vs Open-S	ource Licensing Model, use of Open- Source Software, FOSS does not mean	n no	cost	. His	tory:			
BSD, The F	Free Software Foundation and the GNU Project.							
UNIT-II	OPEN-SOURCE PRINCIPLES AND METHODOLOGY				9			
Open-Sour	ce History, OpenSource Initiatives, Open Standards Principles, Methodolo	gies,	, Ph	iloso	phy,			
Software from	eedom, Open-Source Software Development, Licenses, Copyright vs. Copy	left, F	Pate	nts, l	Zero			
marginal co	ost, Income-generation Opportunities, Internationalization - Licensing: What	is a l	_icer	nse,	How			
to create yo	our own Licenses, Important FOSS Licenses (Apache, BSD, PL, LGPL), co	pyrig	hts a	and	сору			
lefts, Paten	t.							
UNIT-III	OPEN SOURCE PROJECT				9			
Starting and	d maintaining own Open-Source Project, Open-Source Hardware, Open-Sour	rce D	esig	jn, O	pen-			
source Tea	aching, Open-source media.Collaboration: Community and Communication	n, Co	ontri	butin	g to			
OpenSourc	e Projects Introduction to GitHub, interacting with the community on GitHub	o, Co	mm	unica	ation			
and etiquet	te, testing open-source code, reporting issues, contributing code. Introduc	tion	to V	/ikipe	edia,			
contributing	to Wikipedia or contributing to any prominent open-source project of studen	ťs ch	noice	Э.				
UNIT-IV	UNDERSTANDING OPEN-SOURCE ECOSYSTEM				9			
Open-Sour	ce Operating Systems: GNU/Linux, Android, Free BSD, Open Solaris. Open-	Sour	ce H	lardv	/are,			
Virtualizatio	n Technologies, Containerization Technologies: Docker, Development tools,	IDEs	, De	bug	gers,			
Programmi	ng languages, LAMP, Open-Source Database technologies.							
UNIT-V	OPEN SOURCE ETHICS & CASE STUDIES				9			
Open Sour	ce Ethics – Open Vs Closed Source – Government – Ethics – Impact	of (Эре	n so	urce			
Technology	 Shared Software – Shared Source.Example Projects: Apache web set 	erver,	GN	1U/Li	nux,			
Android, M	ozilla (Firefox), Wikipedia, Drupal, wordpress, GCC, GDB, github, Free BS	SD, C	Oper	n Sol	aris,			
Open Office. Open Source Hardware, Virtualization Technologies, Containerization Technologies: Docker,								
Development tools, IDEs, debuggers, Programming languages, LAMP, Open Source database								
technologie	s. Study: Understanding the developmental models, licensing, me	ode	of	fund	ding,			
commercia	/non-commercial use.							
	TOTAL:45 PERIODS							

COURSE OUTCOMES

At end of the course, learners will be able to

CO1: Differentiate between Open Source and Proprietary software and Licensing.

CO2: Understand the policies, licensing procedures and ethics of FOSS.

CO3: Build and modify one or more Free and Open Source Software packages.

CO4: Recognize the applications, benefits and features of Open-Source Technologies.

CO5: Contribute software to and interact with Free and Open Source Software development projects.

CO6: Gain knowledge to start, manage open-source projects.

TEXT BOOKS:

- Kailash Vadera, Bhavyesh Gandhi, "Open Source Technology", Laxmi Publications Pvt Ltd, 1st Edition,2012.
- 2. P.Rizwan Ahmed, Open Source Software, Margham Publication, 2015.
- 3. Fadi P. Deek and James A. M. McHugh, "Open Source: Technology and Policy", Cambridge Universities Press 2009.

- 1. Kailash Vadera & Bhavyesh, "Open-Source Technology", Gandhi, University Science Press, Laxmi Publications, 2009.
- 2. Sumitabha Das, "Unix Concepts and Applications" Tata McGraw Hill Education, 2006.
- "Perspectives on Free and Open-Source Software", Clay Shirky and Michael Cusumano, MIT press, 2007.

21PAD48	ENTERPRISE APPLICATION DEVELOPMENT	L	т	Р	С
-		3	0	0	3
COURSE C	BJECTIVES:	•	•	•	•
The main o	bjectives of this course are:				
• Tol	Inderstand the basics and configuration of MongoDB.				
• To a	acquire knowledge on web frameworks, develop server side web application	s like	No	de is	and
Тос	levelop innovative web applications using various technologies.	0 1110		aoijo	ana
• To b	uild application on Express Web				
• To r	provide good understanding of latest web technologies on client side compon	ents	liko	Rea	ct IS
and	Angular2		inte	ncu	
and					
UNIT-I	MongoDB				9
Basics, Cor	nfiguring Server and Client, MongoDB Compass, Creating Database, Mong	јоDВ	Cor	nma	nds,
MongoDB	CRUD Operations. Introduction to REST and API, REST Constraints,	Rep	rese	ntati	ons,
Resource lo	dentifier, REST Actions, Status Codes.				
	Nodols				0
UNIT-II	Node IS Fastures and Drowbacks, actus Environment for Node Is.	Nodo	10	Droc	9
architecture	Node IS Web Server Node IS Global Objects Node IS OS Objects Node I	IS Fr	JJ r∩r ⊦	land	lina
Node JS Ev	vent Loop. NodeJS File System, Asvnc and Sync. Connecting with Database	e. Ha	ndlir	a Cl	RUD
Operations.		,	-	3 -	
•					
UNIT-III	Building an Express web application				9
Introduction	to Express, Installation of Express, Create first Express application, the a	pplic	atior	req	uest
and respon	se objects, configuring an Express application, rendering views, Authentication	on, A	uthc	orizat	ion.
UNIT-IV	Introduction to ReactJS				9
React Com	ponents, React State and Props Component intercommunication: Compor	nent	Com	iposi	tion,
pass data f	rom parent to child, pass data from child to parent, Fetching data API using	axio	ms,	Туре	es of
forms, Form	n Validations, Posting Data, React Router, and Building & Deploying React A	pp.			
	lates desting to Assessed				•
	Introduction to Angular2		4 \/	م از ما م	9
Angular2 A	rcnitecture (Component-Based Architecture), Consuming API, State Manage assing data from parent to child and Passing data between siblings. A	emer	II, Va ar2	alida Sno	tion,
Directives	Modules Components Observables Binding Pipes Dependency Injection	ligui		Ope	cinc.
,					
	TO	۲AL:	45 P	ERI	DDS
COURSE C	UTCOMES:				
At end of th	e course, learners will be able to				
 Und 	erstand the database connectivity and application servers.				
• Exp	ore the type of forms with validations using ReactJS.				
• Utili:	ze Express framework to develop responsive web applications.				
 Dem 	nonstrate the architecture and file system of NodeJs.				
• Iden	tify the significance of component intercommunication with Angular2.				
IFXI ROO	K2:				

1. Amos Q. Haviv, MEAN Web Development, 2nd Edition, Packt Publications, 2016.

2. Vasan Subramanian, "Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node", 2nd Edition, APress. 2019

3. Fernando Doglio, "REST API Development with Node.js", 2nd Edition, APress, 2018

- 1. Shelly Powers, "Learning Node: Moving to the Server-Side", 2nd Edition, O"REILLY, 2016.
- 2. Simon D. Holmes and Clive Harber, "Getting MEAN with Mongo, Express, Angular, and Node", Second Edition, Manning Publications, 2019.
- 3. Brad Dayley, "Node.js, MongoDB and Angular Web Development", 2nd Edition, Addison-Wesley Professional, 2017.

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

OPEN ELECTIVES

2104001	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	L	Т	Ρ	С
ZIUADUI	FUNDAMENTALS	2	0	2	3
COURSE OBJECTIVES:					
 Understand intelligent agents and discuss the different types of agents. 					
 Solv 	e problems using uninformed and informed search techniques.				
 Explain the different types of machine learning models and their applications. 					
 Train and evaluate neural networks for classification tasks. 					
 Impl 	lement unsupervised learning algorithms for clustering and dimensionality	red	uctior) .	
UNIT-I	INTELLIGENT AGENT				6
Introduction	n - Foundations of AI - History of AI - The state of the art - Risks and	d Be	enefit	s of	AI -
Intelligent	Agents - Nature of Environment - Structure of Agent - Problem S	Solv	ing A	\gen	ts -
Formulating	g Problems.				
UNIT-II	PROBLEM SOLVING WITH SEARCH TECHNIQUES				6
Uninformed	d Search - Breadth First Search- Depth First Search - Depth Limited S	Sea	rch- I	nforr	med
Search - G	reedy Best First- Constraint Satisfaction Problems (CSP)- Examples	- M	ap C	olori	ng
Backtrackir	ng Search for CSP.				
UNIT-III	LEARNING				6
Machine L	earning: Definitions – Classification - Regression - approaches of r	mac	hine	learı	ning
models - Ty	ypes of learning - Probability - Basics - Linear Algebra – Hypothesis spa	ace	and i	nduc	ctive
bias, Evalu	ation.				
UNIT-IV	SUPERVISED LEARNING				6
Neural Net	work: Introduction, Perceptron Networks - Back propagation networks	; - C	ecisi	on T	ree:
Entropy –	classification algorithm - Rule based Classification- Naïve Bayesia	n c	lassif	icatio	on -
Support Ve	ector Machines (SVM).				
UNIT-V	UNSUPERVISED LEARNING				6
Unsupervis	ed Learning- Kohonen Self-Organizing Feature Maps - Learning Vect	or G	luant	izatio	on –
Clustering-	Types of Clustering – Hierarchical clustering algorithms – k-means alg	gorit	hm.		
			30 P	ERIC	DDS
PRACTICA	L EXERCISES:	4	30 PE	RIO	DS
1. Implen	nenting breadth first search.				
2. Implen	nenting depth first search.				
3. Implen	nenting Greedy Best Search.				
4. Implen	nenting a regression model.				
5. Implen	nenting a decision tree classifier.				
6. Implen	nenting Naive Bayesian classification.				
7. Implen	nenting neural network using self-organizing maps.				
8. Implen	nenting k-means algorithm to cluster a set of data.				
9. Implen	nenting hierarchical clustering algorithm.				
10. Impien	nenting Learning vector Quantization.				
	тот	AL:	60 P	ERIC	DDS

COURSE OUTCOMES:

At the end of the course, learners will be able to

- **CO1:** Explain the fundamental concepts of intelligent agents, including their definition, nature, structure, and problem-solving capabilities.
- **CO2:** Apply uninformed and informed search techniques to solve various types of problems.
- **CO3:** Analyze the different approaches to machine learning, including classification, regression.
- **CO4:** Implement supervised learning algorithms, such as neural networks, decision trees, and support vector machines
- **CO5:** Evaluate unsupervised learning algorithms, such as self-organizing maps and clustering algorithms, for their effectiveness in data analysis.

TEXTBOOKS:

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Fourth Edition, 2021
- 2. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.
- 3. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 2017

- 1. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", Second Edition, MIT Press, 2018
- 2. Saikat Dull, S. Chandramouli, Das, "Machine Learning", 1st Edition, Pearson, 2018.
- 3. Deepak Khemani, "Artificial Intelligence", 2ndEdition, Tata McGraw Hill Education, 2013

		L	т	Р	С
210AD02	IOT CONCEPTS AND APPLICATIONS	2	0	2	3
OBJECTIVE	S:				
At the end of the course, learners will be able to					
• Io ap	prise students with basic knowledge of IoT that paves a platform to under	rstar	id phy	sical	and
• To an	alvze requirements of various communication models and protocols for c	nst-e	offectiv	/e de	sian
of IoT	applications on different IoT platforms.			0 00	oigii
To int	roduce the technologies behind Internet of Things (IoT).				
• To ex	plain the students how to code for an IoT application using Arduino/	Rasp	berry	Pi c	pen
platfo	rm.				
 To ap 	pply the concept of Internet of Things in real world scenario.				
UNIT-I	INTRODUCTION TO INTERNET OF THINGS				5
Evolution of	Internet of Things - Enabling Technologies - IoT Architectures: or	neM2	2M, Ic	T W	orld
Forum (IoTV	VF) and Alternative IoT Models – Simplified IoT Architecture and Core	e lo]	Fun	ction	al
Stack – Fog	, Edge and Cloud in IoT				-
UNIT-II	COMPONENTS IN INTERNET OF THINGS		4 I	1.1.0.14	5
Functional E	tion modules (Bluetooth, Zighee, Wifi, GPS, GSM Modules)	- C	ontroi	Unit	s -
	PROTOCOLS AND TECHNOLOGIES BEHIND IOT				6
IOT Protoco	bls - IPv6, 6LoWPAN, MQTT, CoAP - RFID, Wireless Sensor N	letw	orks,	Big	Data
Analytics, C	oud Computing, Embedded Systems.		,	0	
UNIT-IV	OPEN PLATFORMS AND PROGRAMMING				7
IOT deployr	nent for Raspberry Pi /Arduino platform -Architecture –Programmir	ng –	Inter	facir	ıg —
Accessing G	PIO Pins – Sending and Receiving Signals Using GPIO Pins – Conn	ectir	ng to t	the	
	INT APPLICATIONS				7
Business m	odels for the internet of things. Smart city. Smart mobility and transpo	rt Ir	dustr	ial Io	
Smart health	n. Environment monitoring and surveillance – Home Automation – Sm	hart <i>i</i>	Agricu	ulture),)
	, 3		30 P	ERIC	DDS
PRACTICAL	EXERCISES:		30 P	ERIC	DS
1. Introc	luction to Arduino platform and programming				
2. Interf	acing Arduino to Zigbee module				
3. Interf	acing Arduino to GSM module				
4. Interf	acing Arduino to Bluetooth Module				
5. Introc	luction to Raspberry PI platform and python programming				
6. Interf	acing sensors to Raspberry PI				
7. Comi	municate between Arduino and Raspberry PI using any wireless mediu	Im			
8. Setur	a cloud platform to log the data				
9. Log [Data using Raspberry PI and upload to the cloud platform				
10. Desig	in an IoT based system.				
	ТО	TAL	: 60 P	ERIC	DS
		_		_	
At the end of	The course, learners will be able to n the concent of IoT and compare the stack of different technologies				
CO 2: Under	stand the communication modules, various protocols and able to integra	te wi	th		

Arduino/Raspbery.

- CO 3: Design portable IoT using Arduino/Raspberry Pi /open platform
- **CO 4:** Apply data analytics and use cloud offerings related to IoT.
- **CO 5:** Analyze applications of IoT in real time scenario.

TEXTBOOKS:

- Robert Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salgueiro, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017
- 2. Samuel Greengard, The Internet of Things, The MIT Press, 2015
- 3. Perry Lea, "Internet of things for architects", Packt, 2018

REFERENCES:

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi , "The Internet of Things Key applications and Protocols", Wiley, 2012
- 2. IOT (Internet of Things) Programming: A Simple and Fast Way of Learning, IOT Kindle Edition.
- 3. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 4. ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015
- 5. https://www.arduino.cc/

https://www.ibm.com/smarterplanet/us/en/?ca=v_smarterplanet

		L	т	Р	С
210AD03	DATA SCIENCE FUNDAMENTALS	2	0	2	3
OBJECTIV	ES:				
At the end c	of the course, learners will be able to				
• To E	xplore the need of Data Science.				
• To L	Inderstand the life cycle of Data Analytics.				
• To g	ain the insights from the data through statistical analysis.				
• To v	isualize the data by applying visualization techniques.				
• Tos	olve real world data analysis using R programming.				
UNIT-I	INTRODUCTION TO DATA SCIENCE				5
What is Da	ta - Need for Data Science - Data Science Process – Taxonomy	of Da	ata A	nalyti	cs –
History on I	Methodologies on Data Analytics – KDD Process – State of Practice	e in A	Analy	tics –	Key
Roles for T	he New Big Data Ecosystem.				
UNIT-II	DATA ANALYTICS LIFE CYCLE				5
Data Analy	tics Life Cycle Overview – Discovery – Data Preparation – Mode	l Pla	nning) – M	odel
Building –	Communicate Results – Operationalize – Case Study on Global I	nno	atior/	Netv	vork
	IS (GINA).				6
Descriptive	statistics – Descriptive Univariate Analysis – Univariate Fr		ncios		U Data
Visualizatio	n – Statistics – Descriptive Onivariate Analysis – Onivariate Tro	eque iata	Analy	veie	Jala
		late	Anary	313.	7
Data Visua	lization: Pixel-Oriented Visualization Techniques, Geometric Proje	ectio	n Vis	ualiza	tion
Techniques	. Icon-Based Visualization Techniques, Hierarchical Visualiz	ation	n Te	chnia	ues.
Visualizing	Complex Data and Relations.			q	,
UNIT-V	DATA ANALYTICS USING EXCEL AND R				7
R – Progra	mming - Key concepts – Basic features of R -Data Exploration an	d an	alysis	with	R –
Excel - Sta	atistical methods for evaluation - Presentation and analysis of C	Quar	ititativ	ve Da	ita -
Presentatio	n and analysis of Qualitative Data- Inferential Statistical analysis o	f dat	a.		
Data Wran	gling: Hierarchical Indexing, Combining and Merging Data Se	ts R	esha	ping	and
Pivoting.	Data Visualization matplotlib: Basics of matplotlib, plotting w	/ith	pand	as, [Data
Visualizatio	n using Excel.				
			30 F	PERIC	DS
PRACTICA	L EXERCISES:		30 F	PERIC	DDS
1. Prac	ctical based on NumPy ndarray using R.				
2. Wor	king with Pandas Data Frame using R				
3. Han	dling Missing values and Duplicate Values using R.				
4. Data	a Integration in R.				
5. Data	a Entry and Calculate Summary Statistics in Excel.				
6. Gen	Protection data and from UCL and parform the following energy includes				
7. Use	Diabetes data set from OCI and perform the following operations niveriate Analysis: Frequency, Mean, Median, Mede, Variance, Star	dara		otion	and
a. U Skov		luarc	Dev	alion	anu
8 Date	a Cleansing using Excel				
Q Simi	a cleaning using Excel				
10. Data	a Visualization using R and Excel.				
	тс	DTAL	.: 60	PERI	ODS

COURSE OUTCOMES:

At the end of the course, learners will be able to

CO 1: Explain the concept of data science and role of data analytics.

- **CO 2:** Understand the overview of life cycle of data analytics.
- **CO 3:** Apply data analytics on data and use different analytics method related to data.
- CO 4: Create informative visualization and summarize data sets.
- **CO 5:** Analyze applications using data analysis.

TEXTBOOKS:

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, Introducing Data Sciencell, Manning Publications, 2016.
- 2. Moreira, J., Carvalho, A., Carvalho, A. C. P. d. L. F., Horvath, T. (2018). AGeneral Introduction to Data Analytics. United Kingdom: Wiley.
- 3. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. (2015). Germany: Wiley.

- 1. Thomas Mailund, "Beginning Data Science in R Data Analysis, Visualization and Modelling for the Data Scientist", Apress Publication, 2017.
- 2. O'Neil, C., & Schutt, R., Doing Data Science: Straight Talk from the Frontline O'Reilly Media,2013.
- 3. McKinney, W., Python for Data Analysis: Data Wrangling with Pandas, NumPy and IPython. 2nd edition. O'Reilly Media,2017.

210AD04	AUGMENTED REALITY/VIRTUAL REALITY	L 2	Т 0	P 2	C 3
COURSE	DBJECTIVES:	<u> </u>	•	-	•
 Explain the fundamental concepts of virtual reality (VR). Understand and apply geometric modeling techniques in VR development Explore the capabilities of World ToolKit and Java 3D for VR development. Understand the software development process for AR applications. Develop a comprehensive understanding of various AR applications and their real-world impact. 					
UNIT-I	INTRODUCTION	No.ut	Dovio	00 T	o
dimensiona Devices: G	raphics displays-sound displays & haptic feedback.	iput e int	erfac	es-O	utput
Geometric	modeling - kinematics modeling - physical modeling - behaviour	mod	elina	- m	odel
Manageme	ent.	mea	omig		iouoi
UNIT-III	VR PROGRAMMING				6
VR Progra	mming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Co	mpa	rison	of V	Vorld
ToolKit and	d Java 3D				
UNIT-IV	AUGMENTED REALITY				6
Introductio Augmente	n to Augmented Reality-Augmented Reality Hardware-Augmented d Reality Content	Rea	ality	Softv	vare-
UNIT-V	APPLICATIONS				6
Mobile Aug	gmented Reality-Augmented Reality Applications-The Future of Augmented	nted	Reali	ty	
			30 F	PERIO	DDS
PRACTICA	AL EXERCISES:		30 P	ERIC	DS
1. Stu	dy of different game engines.				
2. Imp	elementation on Video/ Feature Viewing.				
3. Imp	ementation on Virtual tour.				
4. Imp	plementation on material animation.				
5. IMP	plementation to snow portal planets.				
0. LAF 7 Dev	veloping architecture of a house using Virtual Reality				
8. Per	form CRO based experiment using Virtual Reality.				
9. Und	dertaking qualitative analysis in Chemistry using Virtual Reality.				
10. Car	ry out assembly/disassembly of an engine using Virtual Reality.				
	TO	DTAL	.: 60	PERI	ODS
COURSE (
At the end	or the course, learners will be able to are the different types of input and output devices used in VR				
CO2: Imple	ement physical modeling techniques to enhance the realism of VR simulation	ons.			
CO3: Deve	lop practical VR applications using chosen VR programming tools.				
CO4: Crea	te and utilize AR content for various applications.				
TEXTBO	Set the future prospects and trends of AR technology.				
1. C. I	Burdea & Philippe Coiffet, "Virtual Reality Technology", Second Edition,	Greg	jory, .	John	
2. Alar	B. Craig"Understanding Augmented Reality Concepts and Applications	",Firs	t Edit	ion,	

Morgan Kaufmann,2013

3. Jason Jerald,"The VR Book: Human-Centred Design for Virtual Reality", First Edition, Association for Computing Machinery and Morgan & Claypool, New York, NY, USA. 2015.

- 1. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley Inter Science, 2nd Edition, 2006.
- 2. Steve Aukstakalnis ,"Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR (Usability)", First Edi, Addison-Wesley Professional, 2016.
- 3. Robert Scoble & Shel Israel "The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything", First edition, Patrick Brewster Press; 2016.

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

ONE CREDIT COURSES

210CA	01 PRACTICAL MACHINE LEARNING WITH TENSORFLOW	L	Τ	Ρ	С
		0	0	2	1
COURSE	OBJECTIVES:				
The mair	objectives of this course are:				
• T	o work with Tensor Flow.				
• T	cexecute prediction and monitoring models.				
• T	work with large dataset.				
CONTEN	π				
1. G	etting started with Tensorflow				
2. C	verview of Machine Learning (Process and Techniques, Demonstration of ML co ayground)	nce	ots v	vith [Сеер
3. D	ata Input and Preprocessing with Tensorflow				
4. N	achine Learning Model Building				
5. P	ediction with Tensorflow				
6. N	onitoring and evaluating models using Tensorboard	- (-)			
/. A	avance Tensorriow (Building custom models - CNNs, Scaling up for large datas	ets)			
0. U	scribuled training with hardware accelerators				
	тот	AL:	15 F	PERI	ODS
COURSE	OUTCOMES:				
At end of	the course, learners will be able to				
CO1 . Up	deratend the concents of Tensor Flow and able to implement complemental				
	monstrate preprocessing of data and to design in sensor board				
CO2: De	velop custom models by building simple dataset				
000.00					
TEXT BO	OKS:				
1 1	orn Tonsorflow 2.0. Promod Singh 1st adition Apross				
1. L 2 N	atural Language Processing with TensorFlow, Thushan Ganagedara, 1st edition	n Pa	ackt		
2. N	ubliching	, i c	JOIN		
REFERE	NCES:				
1. A	dvanced Deep Learning with TensorFlow 2 and Keras, Rowel Atienza, 2nd edit	ion,	Pac	kt	
P	ublishing Limited	,			
2. T	nvML. Pete Warden. 1st edition. O'Reillv				
	, , , , , - ,				

21004002			т	Р	C
21000000		0	0	2	1
COURSE OBJ	ECTIVES:				
The main object	tives of this course are:				
•	Connect to the data and customize a data source.				
•	Create a data extract, edit metadata, create groups and hierarchi	es ir	n fie	ld da	ata.
•	Use sets to compare data subsets.				
•	Build a range of essential chart types for analysis.				
•	Use the Tableau workspace to create visualizations.				
CONTENT					
1. Introduc	tion To Tableau				
2. Data Co	nnections in Tableau Interface				
3. Organiz	ing And Simplifying Data				
4. Building	Chart Types				
5. Advanc	ed Chart Types				
6. Calcula	ions				
7. Logic S	atements				
8. Mapping	3				
9. Statistic	s				
10. Data Vi	sualization Using Tableau				
	TOI	'AL:′	15 P	'ERI(ODS
COURSE OUT					
CO1. To apply	ourse, learners will be able to and comprehend commonly used data analytics techniques with Tableau		ktor	h	
CO2: Understa	nd the advantages of multiple data analytics techniques through learning	prac	tice	s.	
CO3: Understa	nd and produce effective data visualizations.				
CO4: Understa	nd good data practices and apply them to different types of real-world data	ta.	otor	ioo	and
dashboar	ds.	;ets,	5101	165, 6	DIL
TEXTBOOK:					
1. Rvan S	eeper <i>, Practical Tableau,</i> O'Reilly Media, Inc.,				
2. Joshua analytic	N. Milligan, Learning Tableau 2019: Tools for Business Intelligence, data s, 3rd Edition, Packt Publishing Ltd, 2019	prep	o, ar	ıd vis	sual
REFERENCES	:				

1. <u>Chandresh Sinha, Tableau 10 for Beginners: Version 10.x, Ohio Computer Academy, 2017</u>

210CAD03	MASTERING POWER BI	L	Р	С	
		0	0	2	1
COURSE OB	JECTIVES:	<u> </u>	l		
The main obje	ectives of this course are:				
 Identif Import Publis Identif comm Enable Deskto 	y the primary components of the Power BI interface: reports, data, and mo Excel data and build basic visuals. h a desktop report to the Power BI Service. y common challenges in Power BI data models, implement smart solutions on mistakes. es to learn about Data Analysis Expressions (DAX) and Data Visualization op.	del v s, anc with	iews d ave Pov	s. oid ver B	1
000175117	T				
CONTENT					
 Co Po Tra Po Tra Po Us Us Th <li< td=""><td>encepts of Business Intelligence wer BI installation aditional BI vs. Power BI wer BI vs. Tableau vs. QlikView es of Power B e Flow of Work in Power BI orking with Power BI sic Components of Power BI imparison of Power BI Version roduction to Building Blocks of Power BI ta model and importance of Data Modelling eating Calculated Columns and Measures rforming Data Analysis using Data Analysis Expression (DAX)</td><td></td><td></td><td></td><td></td></li<>	encepts of Business Intelligence wer BI installation aditional BI vs. Power BI wer BI vs. Tableau vs. QlikView es of Power B e Flow of Work in Power BI orking with Power BI sic Components of Power BI imparison of Power BI Version roduction to Building Blocks of Power BI ta model and importance of Data Modelling eating Calculated Columns and Measures rforming Data Analysis using Data Analysis Expression (DAX)				
	TO	Γ AL :΄	15 P	PERI	ODS
COURSE OU	TCOMES:				
At end of the	course, learners will be able to				
CO1: Underst CO2: Underst CO3: Create CO4: Build th CO5: Create	cand relationships and how to create and manage them. canding different Data Types. Interactive Data Visualizations and format them. e Data models for the applications. calculated columns and measures using DAX Functions.				
TEXTBOOK: 1. Ra Re	viv, Gil. Collect, Combine, and Transform Data Using Power Query in Exc admond: Microsoft Press, 2019.	el an	d Po	ower	BI.
2. Kn Sta	ight, Devin, Pearson, Michael, Schacht, Bradley, Ostrowsky, Erin. Microsc art Guide. 2nd. Birmingham, UK: PocketPublishing, 2020	ft Po	wer	BI Q	uick

- The Definitive Guide to DAX: Business intelligence for Microsoft Power BI, Alberto Ferrari Marco Russo – 15 September 2020
- 2. Learn Power BI: Step by Step Guide to Building Your Own Reports (2022), by Derek Wilson | 7 March 2022
- 3. Mastering Power BI, Chandraish Sinha, 30 September 2022
- 4. Microsoft Power Bi Dashboards Step By Step, 1e, by Errin O'Connor, 6 March 2020
| 210CAD01 | INTRODUCTION TO INNOVATIVE PROJECTS | L | Т | Ρ | С | | | |
|---|--|-------|-------|-------|-------|--|--|--|
| | | 0 | 0 | 2 | 1 | | | |
| COURSE OB | JECTIVES: | | | | | | | |
| The main obje | ctives of this course are: | | | | | | | |
| To ma | ke students confident enough to handle the day-to-day issues. | | | | | | | |
| To dev | elop the —Thinking SkillI of the students, especially Creative Thinking Ski | lls | | | | | | |
| To trai | n the students to be innovative in all their activities | | | | | | | |
| To prepare a project report on a socially relevant theme as a solution to the existing issues | | | | | | | | |
| CONTENT | | | | | | | | |
| 1. Innovation | | | | | | | | |
| Differe | nce between Creativity and Innovation | | | | | | | |
| Example | les of innovation | | | | | | | |
| Being | nnovative. | | | | | | | |
| Projec | : A literature searches on prototyping of your solution finalized. Prepare a | a pro | totyp | be m | odel | | | |
| or proc | cess and upload. | | | | | | | |
| 2. Innovation | Process | | | | | | | |
| Steps | for Innovation | | | | | | | |
| Right o | climate for innovation | | | | | | | |
| Projec | :: Refining the project, based on the review report and uploading the text | | | | | | | |
| 3. Innovation | Project Proposal Presentation | | | | | | | |
| Projec | | | | | | | | |
| | | | | | | | | |
| RUI – | KOI – Template | | | | | | | |
| Project | . Presentation of the innovative project proposal and upload. | | | | | | | |
| | TOI | AL: | 15 P | ERI | ODS | | | |
| COURSE OU | TCOMES: | | | | | | | |
| At end of the o | course, learners will be able to | | | | | | | |
| CO1: Understand the various types of thinking skills. | | | | | | | | |
| CO2: Enhanc | CO2: Enhance the innovative and creative ideas. | | | | | | | |
| CO3: Find out | a suitable solution for socially relevant issues- J component | | | | | | | |
| TEXT BOOKS | | | | | | | | |
| 1. How to | nave Creative Ideas, Edward debone, Vermilon publication, UK, 2007 | | | | | | | |
| 2. The Art | of Innovation, Tom Kelley & Jonathan Littman, Profile Books Ltd, UK, 2008 | 3 | | | | | | |
| REFERENCE | S: | | | | | | | |
| 1. Creatir | ng Confidence, Meribeth Bonct, Kogan Page India Ltd. New Delhi. 2000 | | | | | | | |
| 2. Latera | Thinking Skills, Paul Sloane, Keogan Page India Ltd, New Delhi, 2008 | | | | | | | |
| 3. Indian | Innovators, Akhat Agrawal, Jaico Books, Mumbai, 2015 | | | | | | | |
| 4. JUGA | AD Innovation, Navi Radjou, Jaideep Prabhu, Simone Ahuja Random ho | use | India | a, No | oida, | | | |
| 2012 | | | | | | | | |

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE MANDATORY COURSES

21MCC01	CONSTITUTION OF INDIA	L	<u>T</u>	Р	C			
COURSE OB	IECTIVES	1		U	0			
The main objectives of this course are:								
 To explain the basic features and fundamental principles of Constitution of India. To explain the salient features and characteristics of the Constitution of India. To explain the Directive Principles of State Policy, Federal structure and distribution of legislative and financial powers. To explain the amendment of the Constitutional Powers and Procedure, the historical perspectives af the perspective principles of the Constitution of Powers and Procedure. 								
 To explain the Local Self Government–Constitutional Scheme in India. 								
SYLLABUS								
1. Meaning d	the constitution law and constitutionalism.							
2. Historical perspective of the Constitution of India.								
3. Salient lea	the fundemental rights							
4. Scheme o	r the fundamental fights.							
5. The schen	ie of the Fundamental Dulles and its legal status.							
6. The Direct	ive Principles of State Policy–its importance and implementation.							
7. Federal structure and distribution of legislative and financial powers between the Union and the								
8 Parliamer	tary Form of Government in India–The constitution powers and status of th	ے Pr	asidan	t of				
o. Paniamentary Form of Government in India–The constitution powers and status of the President of India.								
9. Amendment of the Constitutional Powers and Procedure.								
10. The historical perspectives of the constitutional amendments in India.								
11. Emergency Provisions: National Emergency, President Rule, Financial Emergency.								
12. Local Self Government–Constitutional Scheme in India.								
13. Scheme of the Fundamental Right to Equality.								
14. Scheme of the Fundamental Right to certain FreedomunderArticle19								
15. Scope of the Right to Life and Personal Liberty under Article21								
			45.85					
		AL:	45 PE	RIO	DS			
At the end of the course, learners will be able to								
CO1: Explain the meaning of the constitution law and constitutionalism and Historical								

perspective of the Constitution of India.

- **CO2:** Explain the salient features and characteristics of the Constitution of India, scheme of the fundamental rights and the scheme of the Fundamental Duties and its legal status.
- **CO3:** Explain the Directive Principles of State Policy, Federal structure and distribution of legislative and financial powers between the Union and the States, and Parliamentary Form of Government in India.

CO4: Explain the amendment of the Constitutional Powers and Procedure, the historical Perspectives of the constitutional amendments in India, and Emergency Provisions.

CO5: Explain the Local Self Government –Constitutional Scheme in India, Scheme of the Fundamental Right to Equality.

TEXT BOOKS:

1. DurgaDasBasu, "Introduction to the Constitution of India",Lexis Nexis Butterworths Wadhwa,20thedition, Reprint 2011.

Weblink :https://www.india.gov.in/my-government/constitution-india.

21MCC02	ESSENCE OF INDIAN TRADITIONAL	L	т	PC	
0011505.01	KNOWLEDGE	1	0	0 0	
	BJECTIVES:				
• To ex	plain the concept of Indian Traditional Knowledge along with Indian Modern				
Know	ledge.				
• To ex	plain the need and importance of protecting Traditional Knowledge, Knowled	dge s	sharing	Ι,	
and I	ntellectual property rights over Traditional Knowledge.				
 To ex 	plain about the use of Traditional Knowledge to meet the basic needs of hur	nan I	being.		
• To ex	plain the rich biodiversity material sand knowledge preserved for practicing				
tradit	onal lifestyle.				
To ex	plain the use of Traditional Knowledge in Manufacturing and Industry.				
UNIT-I	TRADITIONAL AND MODERN KNOWLEDGE			3	
Two Worlds	s of Knowledge - Phase of Explorers, Sir Arthur Cotton and Irrigation, Small	рох	Vaccir	nation,	
Late Ninete	eenth Century, Voelcker, Howard and Agriculture, Havell and Indian Ar	t; In	dians	at the	
Encounter ·	Gaekwad of Baroda and Technical Education, Science Education and M	oder	n Indu	istries,	
Hakim Ajma	al Khan and Ayurveda, R. N. Chopra and Indigenous Drugs, Gauhar Jaan and	d Ind	ian Cla	assical	
Music; Link	ing Science and the Rural - Tagore's Sriniketan Experiment, Marthandam, t	he Y	MCA I	Model,	
Gandhi's	Thoughts on Development, Nehru'sViewofGrowth;Post-Ir	ndep	enden	ceEra-	
Modernizati	onandTraditionalKnowledge,Social Roots of Traditional Knowledge	Activ	ism, (Global	
Recognition	for Traditional Knowledge.				
UNIT-II	PROTECTION AND SHARING			3	
For Recog	nition and Protection-United Nations Educational, Scientific and Cultu	Iral	Organi	ization	
(UNESCO)	World Health Organization (WHO), International Labour Organization (I	LO),	UNW	orking	
Group on Ir	ndigenous Populations, Evolution of Other Organizations; Norms of Sharing	- Úr	nited N	lations	
Environmer	t Programme (UNEP), World Intellectual Property Organization (WIPC	D), \	Vorld	Trade	
Organizatio	n (WTO); IPR and Traditional Knowledge-Theoretical Background, Positive F	Prote	ctions	of TK,	
Defensive S	Strategies, IPR Facilitation for TK.			,	
UNIT-III	TRADITIONAL KNOWLEDGE FOR BASIC NEEDS			3	
Indian Mid w	ifery Tradition—The Dai System, Surface Flow Irrigation Tanks, Housing-A F	luma	an Rigł	nt,	
Changing Pr	iorities—Niyamgiri. Biodiversity and Genetic Resources: Jeevani The Wo	nder	Herb o	of	
Kanis, A Holi	stic Approach -FRLHT, Basmati – In the New Millennium, AYUSH-Based Co	osme	tics.		
UNIT-IV	TRADITIONAL KNOWLEDGE IN MANUFACTURING			3	
Drug Discove	ery, A Sweetener of Bengal, The Sacred Ring of Payyanur, Channapatna To	ys		·	
UNIT-V	TRADITIONAL CULTURAL EXPRESSIONS			3	
Banarasi Sa	aree. Music. Built and Tangible Heritage. Modern Yoga. Sanskrit and Artificia	al Inte	elliaena	ce.	
Climate Cha	ange and Traditional Knowledge.			,	
	ΤΟΙ	AL:	15 PE	RIODS	
COURSE OUTCOMES:					
At the end of the course, learners will be able to					
CO1. Evel	ain the concept of Indian Traditional Knowledge clong with Indian Meders				
NH0V	พเธนนูธ.				

- **CO2:** Explain the need and importance of protecting Traditional Knowledge, Knowledge sharing, and Intellectual property rights over Traditional Knowledge.
- CO3: Explain about the use of Traditional Knowledge to meet the basic needs of human being.
- **CO4:** Explain the rich biodiversity material sand knowledge preserved for practicing traditional lifestyle.
- **CO5:** Explain the use of Traditional Knowledge in Manufacturing and Industry.

TEXT BOOKS:

- 1. Nirmal Sengupta"Traditional Knowledge in Modern India Preservation, Promotion, Ethical Access and Benefit Sharing Mechanisms"Springer,2019.
- 2. AmitJha,"Traditional Knowledge System in India",Atlantic Publishers and Distributors PvtLtd, 2009.
- 3. Basanta Kumar Mohanta, Vipin Kumar Singh "Traditional Knowledge System and Technology in India", Pratibha Prakashan, 2012.
- 4. Kapil Kapoor, Michel Danino"Knowledge Traditions and Practices of India", Central Board of Secondary Education, 2012.

REFERENCES:

- 1. NPTEL video lecture on "Ayurvedic Inheritance of India", Video link:https://nptel.ac.in/courses/121/106/121106003/#.
- 2. Youtube video on "Introduction to Indian Knowledge Systems", Video link:https://www.youtube.com/watch?v=LZP1StpYEPM.
- 3. Youtube video on "12 Great achievements of Indian Civilization", Video link:https://www.youtube.com/watch?v=xmogKGCmclE.